A. | x-y=0 | B. | x+y=0 | C. | x+2y-3=0 | D. | (x+1)2+(y-2)2=5 |
分析 由已知向量等式可知P在AB所在的直線上,由直線方程的兩點(diǎn)式得答案.
解答 解:由$\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,且λ+μ=1,得$\overrightarrow{OP}=λ\overrightarrow{OA}+(1-λ)\overrightarrow{OB}$=$λ(\overrightarrow{OA}-\overrightarrow{OB})+\overrightarrow{OB}$,
∴$\overrightarrow{OP}-\overrightarrow{OB}=λ\overrightarrow{BA}$,即$\overrightarrow{BP}=λ\overrightarrow{BA}$,則P、A、B三點(diǎn)共線.
設(shè)P(x,y),則P在AB所在的直線上,
∵A(1,1)、B(-3,3),
∴AB所在直線方程為$\frac{y-1}{3-1}=\frac{x-1}{-3-1}$,整理得:x+2y-3=0.
故P的軌跡方程為:x+2y-3=0.
故選:C.
點(diǎn)評(píng) 本題考查共線向量基本定理的應(yīng)用,考查軌跡方程的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 9 | C. | 18 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | b>c>a | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2+12k,4+12k](k∈Z) | B. | [-5+12k,1+12k](k∈Z) | C. | [1+12k,7+12k](k∈Z) | D. | [-2+6k,1+6k](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{3}{4}$) | B. | ($\frac{1}{2}$,$\frac{3}{4}$) | C. | (0,$\frac{1}{2}$) | D. | [$\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com