5.函數(shù)f(x)=sin(ωx+φ)+$\sqrt{3}cos({ωx+φ})({ω>0})$的圖象過(1,2),若f(x)相鄰的零點為x1,x2且滿足|x1-x2|=6,則f(x)的單調(diào)增區(qū)間為( 。
A.[-2+12k,4+12k](k∈Z)B.[-5+12k,1+12k](k∈Z)C.[1+12k,7+12k](k∈Z)D.[-2+6k,1+6k](k∈Z)

分析 (1)利用輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,相鄰的零點為x1,x2且滿足|x1-x2|=6,可得周期為12.求出ω,結(jié)合三角函數(shù)的圖象和性質(zhì),求出單調(diào)增區(qū)間.

解答 解:由$f(x)=sin(ωx+ϕ)+\sqrt{3}cos(ωx+ϕ)=2sin(ωx+ϕ+\frac{π}{3})$,
∵f(x)相鄰的零點為x1,x2且滿足|x1-x2|=6,
∴f(x)的周期為12,即$\frac{2π}{ω}$=12,
∴ω=$\frac{π}{6}$.
那么f(x)=2sin($\frac{π}{6}x$+φ+$\frac{π}{3}$).
∵圖象過(1,2)點,
則f(x)在x=1處取得最大值,即sin($\frac{π}{6}$+φ+$\frac{π}{3}$)=cosφ=1.
∴φ=0+2kπ.
令k=0,可得φ=0.
則函數(shù)解析式f(x)=2sin($\frac{π}{6}x$+$\frac{π}{3}$).
令$-\frac{π}{2}+2kπ≤\frac{π}{6}x+\frac{π}{3}≤\frac{π}{2}+2kπ$,k∈Z.
得:-5+12k,≤x≤1+12k,
∴f(x)的單調(diào)增區(qū)間為[-5+12k,1+12k](k∈Z).
故選;B.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,0<x≤9}\\{f(x-4),x>9}\end{array}\right.$,則f(13)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.由區(qū)域$\left\{\begin{array}{l}{y≤2x}\\{x+2y-4≥0}\\{x+y-4≤0}\end{array}\right.$中的點在直線ax+by+c=0(a,b,c∈R)上的投影構(gòu)成的線段記為AB,則|AB|的最小值為$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義域為R的函數(shù)f(x)既是奇函數(shù),又是周期為3的周期函數(shù),當(dāng)x∈(0,$\frac{3}{2}$)時,f(x)=sinπx,f($\frac{3}{2}$)=0,則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.平面直角坐標(biāo)系中,已知O為坐標(biāo)原點,點A、B的坐標(biāo)分別為(1,1)、(-3,3).若動點P滿足$\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,其中λ、μ∈R,且λ+μ=1,則點P的軌跡方程為( 。
A.x-y=0B.x+y=0C.x+2y-3=0D.(x+1)2+(y-2)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.a(chǎn)、b、c是三角形ABC的三邊,設(shè)向量$\overrightarrow P=(a+c,b),\overrightarrow q=(b-a,c-a)$,若$\overrightarrow P∥\overrightarrow q$,則角C大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.隨機變量X~N(9,σ2),P(X<6)=0.2,則P(9<X<12)=( 。
A.0.3B.0.4C.0.4987D.0.9974

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若復(fù)數(shù)z滿足|z|=1,則|($\overline{z}$+i)(z-i)|的最大值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M,N分別是EF,BC的中點,AB=2AF,∠CBA=
60°.
(1)求證:DM⊥平面MNA;
(2)若三棱錐A-DMN的體積為$\frac{{\sqrt{3}}}{3}$,求MN的長.

查看答案和解析>>

同步練習(xí)冊答案