7.已知雙曲線C1:$\frac{x^2}{16}-\frac{y^2}{4}$=1,雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,M 是雙曲線C2 一條漸近線上的點(diǎn),且OM⊥MF2,若△OMF2的面積為 16,且雙曲線C1,C2的離心率相同,則雙曲線C2的實(shí)軸長為( 。
A.4B.8C.16D.32

分析 求得雙曲線C1的離心率,求得雙曲線C2一條漸近線方程為y=$\frac{a}$x,運(yùn)用點(diǎn)到直線的距離公式,結(jié)合勾股定理和三角形的面積公式,化簡整理解方程可得a=8,進(jìn)而得到雙曲線的實(shí)軸長.

解答 解:雙曲線C1:$\frac{x^2}{16}-\frac{y^2}{4}$=1的離心率為e=$\frac{c′}{a′}$=$\sqrt{1+(\frac{^{′}}{a′})^{2}}$=$\sqrt{1+\frac{1}{4}}$=$\frac{\sqrt{5}}{2}$,
設(shè)F2(c,0),雙曲線C2一條漸近線方程為y=$\frac{a}$x,
可得|F2M|=$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=$\frac{bc}{c}$=b,
即有|OM|=$\sqrt{{c}^{2}-^{2}}$=a,
由△OMF2的面積為16,可得$\frac{1}{2}$ab=16,
即ab=32,又a2+b2=c2,且$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,
解得a=8,b=4,c=4$\sqrt{5}$,
即有雙曲線的實(shí)軸長為16.
故選:C.

點(diǎn)評 本題考查雙曲線的方程和性質(zhì),注意運(yùn)用點(diǎn)到直線的距離公式和離心率公式,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an}中,a5=9,且2a3-a2=6,則a1等于( 。
A.-2B.-3C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,且PA=AD=3,$CD=\sqrt{6}$,E、F分別是AB、PD的中點(diǎn),則點(diǎn)F到平面PCE的距離為( 。
A.$\frac{{3\sqrt{2}}}{4}$B.$\sqrt{2}$C.$\frac{{3\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=ex+e-x,若曲線y=f(x)的一條切線的斜率為$\frac{3}{2}$,則該切點(diǎn)的橫坐標(biāo)等于( 。
A.ln2B.2ln2C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,設(shè)向量$\overrightarrow a=(sinθ,-\frac{1}{2}),\overrightarrow b=(cosθ,\frac{1}{4})$,其中θ∈(0,π).
(1)若$\overrightarrow a∥\overrightarrow b$,求sinθ和cosθ的值;
(2)設(shè)$ϕ∈(0,\frac{π}{2})$,且$sin(ϕ+\frac{π}{2})+cos(ϕ-\frac{3π}{2})=0$,若$sinθcosϕ+cosθsinϕ=\frac{{\sqrt{10}}}{4}$,求證:$\overrightarrow a⊥\overrightarrow b$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.πB.C.2π+4D.3π+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.拋物線C頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,且過點(diǎn)P(2,2).
(1)求拋物線的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo);
(2)直線l:x-y-1=0與拋物線C相交于M,N兩點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC的三內(nèi)角A、B、C所對的邊分別為a、b、c,若c=2bcosA,則此三角形必是(  )
A.等邊三角形B.等腰三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)$f(x)=\frac{{\sqrt{-lnx}}}{{{x^2}-1}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1)B.(0,1)C.(0,1]D.(-∞,-1)∪(-1,1)

查看答案和解析>>

同步練習(xí)冊答案