福建省第14屆運動會在媽祖故里莆田舉行,在開幕式表演“籃球操”的訓(xùn)練中我校A、B、C三個同學(xué)一組進行傳球訓(xùn)練,每個同學(xué)傳給另外兩個中的某一個的可能性都相同
(Ⅰ)列出從A開始3次傳球的所有路徑(用A、B、C表示);
(Ⅱ)求從起A開始3次傳球后,籃球停在A的概率.
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率
專題:計算題,概率與統(tǒng)計
分析:(Ⅰ)按順序列出3次傳球的所有路徑,
(Ⅱ)記“3次傳球后,停在A點”為事件A,找到事件A包含的事件,從而求概率.
解答: 解:(Ⅰ)3次傳球的所有路徑如下:
A→B→C→A,A→B→C→B,A→B→A→B,A→B→A→C,
A→C→B→A,A→C→B→C,A→C→A→C,A→C→A→B.
共8條路徑.
(Ⅱ)記“3次傳球后,停在A點”為事件A,
則事件A包含2個基本事件:A→B→C→A,A→C→B→A.
∴P(A)=
2
8
=
1
4

即3次傳球后,停在A點的概率為
1
4
點評:本題考查了古典概型的識別與古典概型概率的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若電動機轉(zhuǎn)子1秒鐘內(nèi)所旋轉(zhuǎn)的旋轉(zhuǎn)角為10π弧度,則轉(zhuǎn)子每分鐘旋轉(zhuǎn)
 
周.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC折起,使得平面ADC⊥平面ABC,則折起后形成的三棱錐D-ABC的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面α⊥平面β,平面β⊥平面γ,則(  )
A、α∥γ
B、α⊥γ
C、α與γ相交但不垂直
D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一幾何體的直觀圖如圖所示:
(1)畫出該幾何體的三視圖.
(2)求該幾何體的表面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,以F2為圓心,OF2(O為橢圓中心)為半徑作圓F2,若它與橢圓的一個交點為M,且MF1恰好為圓F2的一條切線,則橢圓的離心率為(  )
A、
3
-1
B、2-
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程log1+yx+log1-yx=2log1+yxlog1-yx所表示的曲線是如下圖所示的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大型養(yǎng)雞場在本年度的第x月的盈利y(萬元)與x的對應(yīng)值如表:
x1234
y65708090
注:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2

(1)依據(jù)這些數(shù)據(jù)求出x,y之間的回歸直線方程
?
y
=
?
b
x+
?
a
;
(2)依據(jù)此回歸直線方程預(yù)測第五個月大約能盈利多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
ax3-bx2+(2-b)x+1(a,b是實數(shù),a≠0)在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.
(1)求證:0<a<2b<3a:
(2)若函數(shù)g(x)=f′(x)-2+a-2b.設(shè)g(x)的零點為α,β,求|α-β|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案