分析 根據(jù)三視圖畫(huà)出三棱錐P-ABC的直觀圖,并做出輔助線(xiàn),由三視圖求出棱長(zhǎng)、判斷出線(xiàn)面位置關(guān)系,由椎體的體積公式求出該三棱錐體積;由勾股定理求出其它棱長(zhǎng),判斷該三棱錐的四個(gè)面中最大的面,由三角形的面積公式求出答案.
解答 解:根據(jù)三視圖畫(huà)出三棱錐P-ABC的直觀圖如圖所示:
過(guò)A作AD⊥BC,垂足為D,連結(jié)PD,
由三視圖可知,PA⊥平面ABC,
且BD=AD=1,CD=PA=2,
①該三棱錐體積V=$\frac{1}{3}{S}_{△ABC}•PA$
=$\frac{1}{3}×\frac{1}{2}×3×2$=1;
②BC=3,PD=$\sqrt{P{A}^{2}+A{D}^{2}}$=$\sqrt{5}$,
同理可求AC=$\sqrt{5}$,AB=$\sqrt{2}$,PB=$\sqrt{6}$,PC=3,
∴△PBC是該三棱錐的四個(gè)面中最大的面積,
∴△PBC的面積S=$\frac{1}{2}•BC•PD$=$\frac{1}{2}×3×\sqrt{5}$=$\frac{3\sqrt{5}}{2}$.
故答案為:1;$\frac{3\sqrt{5}}{2}$.
點(diǎn)評(píng) 本題考查三視圖求幾何體的表面積以及體積,以及線(xiàn)面垂直的關(guān)系判斷、應(yīng)用,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 5 | C. | $\sqrt{10}$ | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{33}$ | B. | $\sqrt{17}$ | C. | $\sqrt{41}$ | D. | $\sqrt{42}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | $\frac{4}{3}$ | C. | 2 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com