11.設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.

分析 (1)由f(x)=x+ax2+blnx,知f′(x)=1+2ax+$\frac{x}$,由y=f(x)過P(1,0),且在P點處的切線斜率為2,知$\left\{\begin{array}{l}{f(1)=1+a=0}\\{f′(1)=1+2a+b=2}\end{array}\right.$,由此能求出a,b.
(2)f(x)的定義域為(0,+∞),由(I)知f(x)=x-x2+3lnx,設(shè)g(x)=f(x)-(2x-2)=2-x-x2+3lnx,則g′(x)=-$\frac{(x-1)(2x-3)}{x}$,由此能證明f(x)≤2x-2.

解答 解:(1)∵f(x)=x+ax2+blnx,
∴f′(x)=1+2ax+$\frac{x}$,
∵y=f(x)過P(1,0),且在P點處的切線斜率為2,
∴$\left\{\begin{array}{l}{f(1)=1+a=0}\\{f′(1)=1+2a+b=2}\end{array}\right.$,
解得a=-1,b=3.
(2)f(x)的定義域為(0,+∞),
由(1)知f(x)=x-x2+3lnx,
設(shè)g(x)=f(x)-(2x-2)=2-x-x2+3lnx,
則g′(x)=-$\frac{(x-1)(2x-3)}{x}$,
當(dāng)0<x<1時,g(x)′>0;當(dāng)x>1時,g′(x)<0.
∴g(x)在(0,1)單調(diào)增加,在(1,+∞)單調(diào)減少.
∴g(x)max=g(1)=0.
∴g(x)=f(x)-(2x-2)≤0,
∴f(x)≤2x-2.

點評 本題考查滿足條件的實數(shù)值的求法,考查不等式的證明.解題要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)和構(gòu)造法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若lg25+lg2lg50的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列{an}中,Sn是該數(shù)列的前n項和,已知a4+a8=4,則S11+a6=( 。
A.12B.16C.24D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過拋物線y2=4x的焦點F的直線交拋物線于A,B兩點,點O是原點,若|AF|=5,則△AOF的面積為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E、F分別是棱是AA′,CC′的中點,過直線EF的平面分別與棱BB′,DD′交于M,N,設(shè)BM=x,x∈[0,1],給出以下四種說法:
(1)平面MENF⊥平面BDD′B′;
(2)當(dāng)且僅當(dāng)x=$\frac{1}{2}$時,四邊形MENF的面積最小;
(3)四邊形MENF周長L=f(x),x∈[0,1]是單調(diào)函數(shù);
(4)四棱錐C′-MENF的體積V=h(x)為常函數(shù),以上說法中正確的為( 。
A.(2)(3)B.(1)(3)(4)C.(1)(2)(3)D.(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a>$\frac{1}{2}$,b>0,若a+b=2,則$\frac{1}{2a-1}+\frac{2}$的最小值為( 。
A.3+2$\sqrt{2}$B.6C.9D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知不等式ax2+5x+b<0的解集為{x|-3<x<2},則不等式bx2+5x+a>0的解集為(-$\frac{1}{3}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.空氣質(zhì)量指數(shù)(AirQualityIndex,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù).AQI數(shù)值越小,說明空氣質(zhì)量越好.某地區(qū)1月份平均AQI(y)與年份(x)具有線性相關(guān)關(guān)系.下列最近3年的數(shù)據(jù):
 年份 2014 2015 2016
 1月份平均AQI(y) 76 68 48
根據(jù)數(shù)據(jù)求得y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=-14x+a,則可預(yù)測2017年1月份該地區(qū)的平均AQI為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.ABC 是邊長為6的等邊三角形,P 為空間一點,PA=PB=PC,P到平面ABC距離為$\sqrt{3}$,則 PA與平面ABC 所成角的正弦值為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊答案