6.已知下列四個(gè)命題:
①命題“若α=$\frac{π}{4}$,則tanα=1”的逆否命題為假命題;
②命題p:?x∈R,sinx≤1,則¬p:?x0∈R,使sinx0>1;
③“sinθ=$\frac{1}{2}$”是“θ=30°”的充分不必要條件
④命題p:“?x0∈R,使sinx0+cosx0=$\frac{3}{2}$”;命題q:“若sinα>sinβ,則α>β”,那么(¬p)∧q為真命題.
其中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

分析 利用逆否命題的真假判斷①的正誤;全稱命題與特稱命題的否定關(guān)系判斷②的正誤;充要條件判斷③的正誤;復(fù)合命題的真假判斷④的正誤.

解答 解:對(duì)于①,命題“若α=$\frac{π}{4}$,則tanα=1”的逆否命題為假命題;原命題是真命題,所以逆否命題也是真命題,所以①不正確;
對(duì)于②,命題p:?x∈R,sinx≤1,則¬p:?x0∈R,使sinx0>1;滿足全稱命題與特稱命題的否定關(guān)系,②正確;
對(duì)于③,“sinθ=$\frac{1}{2}$”和“θ=30°”,前者不能得到后者,但是后者一定得到前者,所以“sinθ=$\frac{1}{2}$”是“θ=30°”的必要不充分條件,所以③不正確;
對(duì)于④,命題p:“?x0∈R,使sinx0+cosx0=$\sqrt{2}$sin(x0+$\frac{π}{4}$)$≤\sqrt{2}$≠$\frac{3}{2}$”;p是假命題;¬p是真命題.
命題q:“若sinα>sinβ,則α>β”,反例α=89°,β=361°,所以q是假命題,那么(¬p)∧q為真命題不正確;
所以④不正確.
故選:A.

點(diǎn)評(píng) 本題考查命題的真假的判斷與應(yīng)用,涉及的知識(shí)點(diǎn)不較多,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列關(guān)于命題的說(shuō)法錯(cuò)誤的是( 。
A.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
B.命題“若隨機(jī)變量X~N(1,4),P(X≤0)=m,則P(0<X<2)=1-2m”為真命題
C.命題“若x2-3x+2=0,則x=2”的逆否命題為“若x≠2,則x2-3x+2≠0”
D.若命題P:?n∈N,2n>1000,則?P:?n∈N,2n>1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.對(duì)于任意向量$\overrightarrow{a},\overrightarrow$,下列命題中正確的是( 。
A.若$\overrightarrow{a},\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$與$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$B.|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|
C.|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|D.|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,一個(gè)6×5的矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA=PE=5.
(1)證明:BC⊥PB;
(2)求二面角B-PC-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知$f(x)=|x+\frac{1}{x}-a|+|x-\frac{1}{x}-a|+2x-2a$ (x>0)的最小值為 $\frac{3}{2}$.則實(shí)數(shù)a=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三個(gè)函數(shù)f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零點(diǎn)依次為a,b,c,則a,b,c的大小關(guān)系是a<c<b,a+b+c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.等邊三角形ABC的三個(gè)頂點(diǎn)在拋物線y2=4x上,其中點(diǎn)A重合于坐標(biāo)原點(diǎn),求△ABC的邊長(zhǎng)|BC|和它的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列說(shuō)法正確的是( 。
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充要條件
C.“若tanα≠$\sqrt{3}$,則$α≠\frac{π}{3}$”是真命題
D.?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4,x≥m}\\{{x}^{2}+4x-3,x<m}\end{array}\right.$若函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(-2,1)B.(1,2)C.[-2,1]D.(1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案