4.a(chǎn)=log20.7,b=($\frac{1}{5}$)${\;}^{\frac{2}{3}}$,c=($\frac{1}{2}$)-3,則a,b,c的大小關(guān)系是( 。
A.c>b>aB.b>c>aC.c>a>bD.a>b>c

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:a=log20.7<0,0<b=($\frac{1}{5}$)${\;}^{\frac{2}{3}}$<1,c=($\frac{1}{2}$)-3>1,
故c>b>a,
故選:A

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.四棱錐P-ABCD中,四邊形ABCD為平行四邊形,AC與BD交于點(diǎn)O,點(diǎn)G為BD上一點(diǎn),BG=2GD,$\overrightarrow{PA}$=$\overrightarrow{a}$,$\overrightarrow{PB}$=$\overrightarrow$,$\overrightarrow{PC}$=$\overrightarrow{c}$,用基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}表示向量$\overrightarrow{PG}$=$\frac{2}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow+\frac{2}{3}\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意的n∈N*,滿足關(guān)系式2Sn=3an-3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)公式是bn=$\frac{1}{lo{g}_{3}{a}_{n}(lo{g}_{3}{{a}_{n}}^{2}+1)}$,求證對(duì)一切的正整數(shù)n都有:b1+b2+…+bn<$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|-|2x+m|,m∈R.
(1)當(dāng)m=-4時(shí),解不等式f(x)<0;
(2)當(dāng)x∈(1,+∞)時(shí),f(x)<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=cos2x,若將其圖象沿x軸向左平移a個(gè)單位(a>0),所得圖線關(guān)于原點(diǎn)對(duì)稱,則實(shí)數(shù)a的最小值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.關(guān)于x的函數(shù)y=ax,y=xa,y=loga(x-1),其中a>0,a≠1,在第一象限內(nèi)的圖象只可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)x,y滿足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,則(x+1)2+y2的最小值為( 。
A.1B.$\frac{9}{2}$C.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.?dāng)?shù)列{an}為等比數(shù)列,且a1+1,a3+4.a(chǎn)5+7成等差數(shù)列,則公差d等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知命題p:方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{m-1}$=1表示的曲線是焦點(diǎn)在x軸的雙曲線;命題q:關(guān)于m的不等式m2-(2a+1)m+a(a+1)≤0成立.
(1)若a=$\frac{1}{2}$,且p∧q為真,求實(shí)數(shù)m的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案