分析 (1)由正弦定理化簡已知的式子,由兩角和的正弦公式、誘導公式化簡后求出cosB的值,由內角的范圍和特殊角的三角函數值求出B;
(2)由(1)和內角和定理求出C,根據△ABC是銳角三角形列出不等式求出θ的范圍,由二倍角公式及變形、兩角差的正弦公式化簡后,由正弦函數的性質求出函數的值域.
解答 解:(1)∵$bcosC=\sqrt{2}acosB-ccosB$,
∴由正弦定理得,sinBcosC=$\sqrt{2}$sinAcosB-sinCcosB,
則$sin(B+C)=\sqrt{2}sinAcosB$,
又sin(B+C)=sinA≠0,∴cosB=$\frac{\sqrt{2}}{2}$,
由0<B<π得,B=$\frac{π}{4}$;
(2)由(1)得,C=π-A-B=$\frac{3π}{4}-θ$,
∵△ABC是銳角三角形,∴$\left\{\begin{array}{l}{0<θ<\frac{π}{2}}\\{0<\frac{3π}{4}-θ<\frac{π}{2}}\end{array}\right.$,
解得$\frac{π}{4}<θ<\frac{π}{2}$,
∵$f(θ)=2si{n}^{2}(\frac{π}{4}+θ)-\sqrt{3}cos2θ-2$
=$1-cos(\frac{π}{2}+2θ)-\sqrt{3}cos2θ-2$=$sin2θ-\sqrt{3}cos2θ-1$
=$2sin(2θ-\frac{π}{3})-1$,
由$\frac{π}{4}<θ<\frac{π}{2}$得,$\frac{π}{6}<2θ-\frac{π}{3}<\frac{2π}{3}$,
∴$\frac{1}{2}<sin(2θ-\frac{π}{3})≤1$,則$0<2sin(2θ-\frac{π}{3})-1≤1$,
即函數f(x)的值域是(0,1].
點評 本題考查了正弦定理,兩角和(差)的正弦公式、誘導公式,三角形的面積公式,以及正弦函數的性質的綜合應用,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|-1≤x≤4} | B. | {x|0≤x≤4} | C. | {x|-1≤x≤5} | D. | {x|0≤x≤5} |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com