分析 由于函數(shù)f(x)是分段函數(shù),且對(duì)任意的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,得到x=0時(shí),f(x)=k(1-a2),進(jìn)而得到k.
解答 解:由于函數(shù)f(x)=$\left\{\begin{array}{l}{kx+k(1-{a}^{2}),(x≥0)}\\{{x}^{2}+({a}^{2}-4a)x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R,
則x=0時(shí),f(x)=k(1-a2),
又由對(duì)任意的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立
∴函數(shù)必須為連續(xù)函數(shù),即在x=0附近的左右兩側(cè)函數(shù)值相等,
∴(3-a)2=k(1-a2)(k≠0),
由題意知二次函數(shù)y=x2+(a2-4a)x+(3-a)2的對(duì)稱軸不能在y軸的左側(cè),即a2-4a≤0,
即0≤a≤4,
∴k=$\frac{(3-a)^{2}}{1-{a}^{2}}$(0<a≤4).
故答案為:$\frac{(3-a)^{2}}{1-{a}^{2}}$(0<a≤4).
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),通過(guò)圖象比較函數(shù)值的大小,數(shù)形結(jié)合有助于我們的解題,形象直觀.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,10) | B. | (5,6) | C. | (10,11) | D. | (20,22) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-6,-3) | B. | (6,9) | C. | (7,10) | D. | (10,13) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com