18.在三只密封的盒子中分別裝有2個(gè)黑球,2個(gè)白球,1個(gè)黑球1個(gè)白球,由于上面的標(biāo)簽全貼錯(cuò)了,某人現(xiàn)從貼有1個(gè)黑球1個(gè)白球標(biāo)簽的盒子中摸出兩個(gè)后發(fā)現(xiàn)全是白球,則貼有2個(gè)黑球標(biāo)簽的盒子中其實(shí)是裝有1個(gè)黑球1個(gè)白球.

分析 根據(jù)題干,標(biāo)簽全貼錯(cuò)了,得到從貼有1個(gè)黑球1個(gè)白球標(biāo)簽的盒子中摸出兩個(gè)后發(fā)現(xiàn)全是白球,則貼“兩黑”標(biāo)簽的盒子里裝的只能是一個(gè)黑球和一個(gè)白球.

解答 解:摸出的是白球,這盒子里裝的就是兩個(gè)白球,
則貼“兩黑”標(biāo)簽的盒子里裝的是一個(gè)黑球和一個(gè)白球,
貼“兩白”標(biāo)簽盒子里裝的是兩個(gè)黑球,
故答案為:1個(gè)黑球1個(gè)白球.

點(diǎn)評(píng) 本題考查了古典概型問題,抓住題干中的“標(biāo)簽全貼錯(cuò)了”是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二理下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

曲線在點(diǎn)處的切線方程為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.現(xiàn)有兩個(gè)推理:①在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;
②由“若數(shù)列{an}為等差數(shù)列,則有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”類比“若數(shù)列{bn}為等比數(shù)列,則有$\root{5}{_{6}{•b}_{7}…_{10}}$=$\root{15}{_{1}{•b}_{2}…_{15}}$成立”,則得出的兩個(gè)結(jié)論( 。
A.都正確B.只有②正確C.只有①正確D.都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知傾斜角為45°的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+mt\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)).在直角坐標(biāo)系xOy中,P(1,2),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線M的極坐標(biāo)方程為ρ2(5cos2θ-1)=4.直線l與曲線M交于A,B兩點(diǎn).
(1)求m的值及曲線M的直角坐標(biāo)方程;
(2)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-e${\;}^{\frac{x}{a}}$(a>0)有兩個(gè)相異零點(diǎn)x1、x2,且x1<x2,求證:$\frac{{x}_{1}}{{x}_{2}}$<$\frac{e}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸出k的值為16,則判斷框內(nèi)可填入的條件是( 。
A.$S<\frac{15}{10}$B.$S>\frac{8}{5}$C.$S>\frac{15}{10}$D.$S<\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計(jì)算定積分$\int{\begin{array}{l}1\\{-1}\end{array}}({{x^2}+sinx})dx$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知定義在R上的單調(diào)函數(shù)f(x)滿足對(duì)任意的x1、x2,都有f(x1+x2)=f(x1)+f(x2)成立.若正實(shí)數(shù)a,b滿足f(a)+f(2b-1)=0,則$\frac{1}{a}$+$\frac{8}$的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推知正四面體的下列性質(zhì),則比較恰當(dāng)?shù)氖牵ā 。?br />①各棱長(zhǎng)相等,同一頂點(diǎn)上的任意兩條棱的夾角相等;
②各個(gè)面是全等的正三角形,相鄰的兩個(gè)面所成的二面角相等;
③各個(gè)面都是全等的正三角形,同一頂點(diǎn)的任意兩條棱的夾角相等;
④各棱長(zhǎng)相等,相鄰兩個(gè)面所成的二面角相等.
A.①④B.①②C.①②③D.

查看答案和解析>>

同步練習(xí)冊(cè)答案