分析 根據(jù)x≥a≥1,x≥a>1,a≤x<1三種情況分類討論,能求出a的值.
解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x+2,x≥a\\ 1-x,x<a\end{array}\right.$(其中a>0),$f(1)+f(-a)=\frac{5}{2}$,
∴當(dāng)x≥a≥1時(shí),
f(1)=1-2+2=1,
f(-a)=1-(-a)=1+a,
∴f(1)+f(-a)=1+1+a=$\frac{5}{2}$,解得a=$\frac{1}{2}$,不成立;
當(dāng)x≥a>1時(shí),
f(1)=1-1=0,
f(-a)=1-(-a)=1+a,
∴f(1)+f(-a)=0+1+a=$\frac{5}{2}$,解得a=$\frac{3}{2}$.
當(dāng)a≤x<1時(shí),
f(1)=1-2+2=1,
f(-a)=1-(-a)=1+a,
∴f(1)+f(-a)=1+1+a=$\frac{5}{2}$,解得a=$\frac{1}{2}$.
綜上,a的值為$\frac{1}{2}$或$\frac{3}{2}$.
故答案為:$\frac{1}{2}$或$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查函數(shù)值的求法及應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∉R,x2-x+1>0 | B. | ?x0∉R,${x_0}^2-{x_0}+1≤0$ | ||
C. | ?x∈R,x2-x+1≤0 | D. | ?x0∈R,${x_0}^2-{x_0}+1≤0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -5 | B. | -1 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}\overrightarrow{AB}-\frac{7}{6}\overrightarrow{AC}$ | B. | $\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}$ | C. | $\frac{3}{2}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}$ | D. | $\frac{1}{2}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2$\sqrt{x}$ | B. | y=4-$\frac{4}{x+1}$ | C. | y=log3(x+1) | D. | y=$\root{3}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com