A. | $\frac{3}{2}\overrightarrow{AB}-\frac{7}{6}\overrightarrow{AC}$ | B. | $\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}$ | C. | $\frac{3}{2}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}$ | D. | $\frac{1}{2}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}$ |
分析 根據(jù)已知在△ABC中,$\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BF}=-\frac{1}{2}\overrightarrow{BC}$,結(jié)合向量加減法的三角形法則,可得答案.
解答 解:∵在△ABC中,$\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BF}=-\frac{1}{2}\overrightarrow{BC}$,
∴$\overrightarrow{EF}$=$\overrightarrow{AF}$-$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BF}$-$\overrightarrow{AE}$=$\overrightarrow{AB}$$-\frac{1}{2}\overrightarrow{BC}$-$\frac{2}{3}\overrightarrow{AC}$=$\overrightarrow{AB}$$-\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})$-$\frac{2}{3}\overrightarrow{AC}$=$\frac{3}{2}\overrightarrow{AB}-\frac{7}{6}\overrightarrow{AC}$,
故選:A.
點評 本題考查的知識點是向量在幾何中的應(yīng)用,向量的加減運算的三角形法則,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | A∈l,A∈α,B∈α⇒l?α | |
B. | l?α,A∈l⇒A∉α | |
C. | A∈α,A∈β,B∈α,B∈β⇒α∩β=AB | |
D. | A,B,C∈α,A,B,C∈β且A,B,C不共線⇒α,β重合 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 10 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com