17.已知集合 A={x|x2-x-2>0},B={x|1≤x≤3},則圖中陰影部分所表示的集合為( 。
A.[1,2)B.(1,3]C.[1,2]D.(2,3]

分析 陰影部分表示的集合為B∩∁UA,根據(jù)集合關(guān)系即可得到結(jié)論.

解答 解:陰影部分表示的集合為B∩∁UA,
∵A={x|x2-x-2>0}=(-∞,-1)∪(2,+∞),
∴∁UA=[-1,2],
∵B={x|1≤x≤3}=[1,3],
∴B∩∁UA=[1,2]
故選:C

點評 本題主要考查集合的基本運算,根據(jù)圖象確定集合關(guān)系是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(x)=$\frac{(4x+a)lnx}{3x+1}$,曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若對于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范圍;
(Ⅲ)求證:ln(4n+1)≤16$\sum_{i=1}^{n}$$\frac{i}{(4i+1)(4i-3)}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U=R,集合$A=\left\{{x|{2^x}>\frac{1}{2}}\right\},B=\left\{{x|{{log}_3}x<1}\right\}$,則A∩(∁UB)=(  )
A.(-1,+∞)B.[3,+∞)C.(-1,0)∪(3,+∞)D.(-1,0]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.i為虛數(shù)單位,復(fù)數(shù)$\frac{3+i}{1-i}$的虛部是( 。
A.2iB.2C.-2iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.數(shù)學(xué)與自然、生活相伴相隨,無論是蜂的繁殖規(guī)律,樹的分枝,還是鋼琴音階的排列,當中都蘊含了一個美麗的數(shù)學(xué)模型Fibonacci(斐波那契數(shù)列):1,1,2,3,5,8,13,21…,這個數(shù)列前兩項都是1,從第三項起,每一項都等于前面兩項之和,請你結(jié)合斐波那契數(shù)列,嘗試解答下面的問題:小明走樓梯,該樓梯一共8級臺階,小明每步可以上一級或二級,請問小明的不同走法種數(shù)是(  )
A.20B.34C.42D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于實數(shù)m>-3,若函數(shù)$y={(\frac{1}{2})^x}$圖象上存在點(x,y)滿足約束條件$\left\{\begin{array}{l}x-y+3≥0\\ x+2y+3≥0\\ x≤m\end{array}\right.$,則實數(shù)m 的最小值為(  )
A.$\frac{1}{2}$B.-1C.-$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從六個數(shù)1,3,4,6,7,9中任取2個數(shù),則這兩個數(shù)的平均數(shù)恰好是5的概率為( 。
A.$\frac{1}{20}$B.$\frac{1}{15}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某人打算制定一個長期儲蓄計劃,每年年初存款2萬元,連續(xù)儲蓄12年.由于資金原因,從第7年年初開始,變更為每年年初存款1萬元.若存款利率為每年2%,且上一年年末的本息和共同作為下一年年初的本金,則第13年年初時的本息和約為(  )萬元(結(jié)果精確到0.1).(參考數(shù)據(jù):1.026≈1.13,1.0212≈1.27)
A.20.09萬元B.20.50萬元C.20.91萬元D.21.33萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.《九章算術(shù)》中“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積稱等比數(shù)列,上面3節(jié)的容積共2升,下面3節(jié)的容積共128升,則第5節(jié)的容積為( 。
A.3升B.$\frac{31}{6}$升C.4升D.$\frac{32}{7}$

查看答案和解析>>

同步練習(xí)冊答案