【題目】若對圓 上任意一點 , 的取值與 無關(guān),則實數(shù) 的取值范圍是( )
A.
B.
C.
D.

【答案】D
【解析】設(shè)z=|3x﹣4y+a|+|3x﹣4y﹣9|=5( ),
故|3x﹣4y+a|+|3x﹣4y﹣9|可以看作點P到直線m:3x﹣4y+a=0與直線l:3x﹣4y﹣9=0距離之和的5倍,
∵取值與x,y無關(guān),∴這個距離之和與P無關(guān),
如圖所示:可知直線m平移時,P點與直線m,l的距離之和均為m,l的距離,即此時與x,y的值無關(guān),

當直線m與圓相切時, =1,
化簡得|a﹣1|=5,
解得a=6或a=﹣4(舍去),
∴a≥6
所以答案是:D
【考點精析】根據(jù)題目的已知條件,利用點到直線的距離公式和兩平行線的距離的相關(guān)知識可以得到問題的答案,需要掌握點到直線的距離為:;已知兩條平行線直線的一般式方程為,,則的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個數(shù)為( )。
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐 ,底面 為菱形, 平面 , 的中點, .

(I)求證:直線 平面 ;
(II)求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)< ,則f(x)< 的解集為( )
A.{x|-1<x<1}
B.{x|x<-1}
C.{x|x<-1,或x>1}
D.{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為30元,并且每件產(chǎn)品須向總公司繳納a元(a為常數(shù),2≤a≤5)的管理費,根據(jù)多年的統(tǒng)計經(jīng)驗,預(yù)計當每件產(chǎn)品的售價為x元時,產(chǎn)品一年的銷售量為 (e為自然對數(shù)的底數(shù))萬件,已知每件產(chǎn)品的售價為40元時,該產(chǎn)品一年的銷售量為500萬件.經(jīng)物價部門核定每件產(chǎn)品的售價x最低不低于35元,最高不超過41元.
(1)求分公司經(jīng)營該產(chǎn)品一年的利潤L(x)萬元與每件產(chǎn)品的售價x元的函數(shù)關(guān)系式;
(2)當每件產(chǎn)品的售價為多少元時,該產(chǎn)品一年的利潤L(x)最大,并求出L(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 是定義在 上的函數(shù),則“函數(shù) 為偶函數(shù)”是“函數(shù) 為奇函數(shù)”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=1+ +sin x在區(qū)間[-k,k](k>0)上的值域為[m,n],則m+n的值是( )
A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校高中男生中隨機選取100名學(xué)生,將他們的體重(單位: )數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.

(1)估計該校的100名同學(xué)的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點值作代表);
(2)若要從體重在 , , 三組內(nèi)的男生中,用分層抽樣的方法選取6人組成一個活動隊,再從這6人中選2人當正副隊長,求這2人中至少有1人體重在 內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體 的棱長為1, 分別是棱 的中點,過 的平面與棱 分別交于點 .設(shè) ,

①四邊形 一定是菱形;② 平面 ;③四邊形 的面積 在區(qū)間 上具有單調(diào)性;④四棱錐 的體積為定值.
以上結(jié)論正確的個數(shù)是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習(xí)冊答案