6.一個三位自然數(shù)abc的百位,十位,個位上的數(shù)字依次為a,b,c,當(dāng)且僅當(dāng)a<b且c<b時稱為“凸數(shù)”.若a,b,c∈{5,6,7,8,9},且a,b,c互不相同,任取一個三位數(shù)abc,則它為“凸數(shù)”的概率是( 。
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{6}$D.$\frac{1}{3}$

分析 根據(jù)題意,分析“凸數(shù)”的定義,在{5,6,7,8,9}的5個整數(shù)中任取3個不同的數(shù),將最大的放在十位上,剩余的2個數(shù)字分別放在百、個位上就構(gòu)成一個“凸數(shù)”,再利用古典概型概率計算公式即可得到所求概率.

解答 解:a,b,c∈{5,6,7,8,9},且a,b,c互不相同,
基本事件總數(shù)n=${C}_{5}^{3}$${A}_{3}^{3}$=60,
在{5,6,7,8,9}的5個整數(shù)中任取3個不同的數(shù),將最大的放在十位上,
剩余的2個數(shù)字分別放在百、個位上就構(gòu)成一個“凸數(shù)”,
故“凸數(shù)”有C53×2=20種情況,
任取一個三位數(shù)abc,它為“凸數(shù)”的概率p=$\frac{20}{60}=\frac{1}{3}$.
故選:D.

點評 本題考查組合數(shù)公式的運用,關(guān)鍵在于根據(jù)題干中所給的“凸數(shù)”的定義,再利用古典概型概率計算公式即得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知Ω={(x,y)||x|≤1,|y|≤1},A是曲線y=x3與$y={x^{\frac{1}{2}}}$圍成的區(qū)域,若向區(qū)域Ω上隨機(jī)投一點P,則點P落入?yún)^(qū)域A的概率為$\frac{5}{48}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.命題p:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為∅;命題q:函數(shù)y=(2a2-a)x為增函數(shù).命題r:a滿足$\frac{2a-1}{a-2}≤1$.
(1)若p∨q是真命題且p∧q是假題.求實數(shù)a的取值范圍.
(2)試判斷命題¬p是命題r成立的一個什么條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若a,b是正數(shù),直線2ax+by-2=0被圓x2+y2=4截得的弦長為2$\sqrt{3}$,則t=a$\sqrt{1+2^{2}}$取得最大值時a的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某公司在進(jìn)行人才招聘時,由甲乙丙丁戊5人入圍,從學(xué)歷看,這5人中2人為碩士,3人為博士:從年齡看,這5人中有3人小于30歲,2人大于30歲,已知甲丙屬于相同的年齡段,而丁戊屬于不同的年齡段,乙戊的學(xué)位相同,丙丁的學(xué)位不同,最后,只有一位年齡大于30歲的碩士應(yīng)聘成功,據(jù)此,可以推出應(yīng)聘成功者是。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$sinα=\frac{4}{5},α∈({\frac{π}{2},π}),cosβ=-\frac{5}{13},β是第三象限角$.
(1)求sin(α-β)的值
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)x,y,z∈R+,a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,則a,b,c三數(shù)( 。
A.至少有一個不大于2B.都小于2
C.至少有一個不小于2D.都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}的前幾項為$\frac{1}{2},3,\frac{11}{2},8,\frac{21}{2}…$,則此數(shù)列的通項可能是( 。
A.${a_n}=\frac{5n-4}{2}$B.${a_n}=\frac{3n-2}{2}$C.${a_n}=\frac{6n-5}{2}$D.${a_n}=\frac{10n-9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知角α的頂點在原點,始邊為x軸的非負(fù)半軸,若角α的終邊過點$P(x,-\sqrt{2})$,且$cosα=\frac{{\sqrt{3}}}{6}x$(x≠0),判斷角α所在的象限,并求sinα和tanα的值.

查看答案和解析>>

同步練習(xí)冊答案