1.某公司在進(jìn)行人才招聘時(shí),由甲乙丙丁戊5人入圍,從學(xué)歷看,這5人中2人為碩士,3人為博士:從年齡看,這5人中有3人小于30歲,2人大于30歲,已知甲丙屬于相同的年齡段,而丁戊屬于不同的年齡段,乙戊的學(xué)位相同,丙丁的學(xué)位不同,最后,只有一位年齡大于30歲的碩士應(yīng)聘成功,據(jù)此,可以推出應(yīng)聘成功者是。

分析 通過推理判斷出年齡以及學(xué)歷情況,然后推出結(jié)果.

解答 解:由題意可得,2人為碩士,3人為博士;
有3人小于30歲,2人大于30歲;
又甲丙屬于相同的年齡段,而丁戊屬于不同的年齡段,
可推得甲丙小于30歲,故甲丙不能應(yīng)聘成功;
又乙戊的學(xué)位相同,丙丁的學(xué)位不同,
以及2人為碩士,3人為博士,
可得乙戊為博士,故乙戊也不能應(yīng)聘成功.
所以只有丁能應(yīng)聘成功.
故答案為:丁.

點(diǎn)評 本題考查推理與證明,考查邏輯推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=lnx-\frac{1}{2}a{x^2}+x$,a∈R.
(Ⅰ)當(dāng)a=0時(shí),求函數(shù)f(x)在(1,f(1))處的切線方程;
(Ⅱ)令g(x)=f(x)-ax+1,求函數(shù)g(x)的極值;
(Ⅲ)若a=-2,正實(shí)數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明:${x_1}+{x_2}≥\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={a2,a+1,-3},B={-3+a,2a-1,a2+1},若A∩B={-3},求實(shí)數(shù)a的值及A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知一個(gè)正方形的直觀圖是一個(gè)平行四邊形,其中有一邊長為4,則此正方形的面積是16或64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.橢圓ax2+by2=1(a>0,b>0,且a≠b)與直線x+y-1=0相交于A,B兩點(diǎn),C是AB的中點(diǎn),若|AB|=2$\sqrt{2}$,直線OC的斜率為$\frac{\sqrt{2}}{2}$,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個(gè)三位自然數(shù)abc的百位,十位,個(gè)位上的數(shù)字依次為a,b,c,當(dāng)且僅當(dāng)a<b且c<b時(shí)稱為“凸數(shù)”.若a,b,c∈{5,6,7,8,9},且a,b,c互不相同,任取一個(gè)三位數(shù)abc,則它為“凸數(shù)”的概率是(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求f(x)的最小正周期; 
(2)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.
(3)求f(x)的單調(diào)區(qū)間;
(4)求f(x)的對稱軸和對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tan(θ-π)=2,則sin2θ+sinθcosθ-2cos2θ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)滿足f(x)+f(-x)=0,在[-1,0]上為單調(diào)增函數(shù),又α,β為銳角三角形二個(gè)內(nèi)角,則( 。
A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(sinα)>f(cosβ)

查看答案和解析>>

同步練習(xí)冊答案