4.已知復(fù)數(shù)z=(1+i)(a+2i)(i為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a等于( 。
A.-2B.-1C.0D.2

分析 直接由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡復(fù)數(shù)z,又已知復(fù)數(shù)z是純虛數(shù),得到$\left\{\begin{array}{l}{a-2=0}\\{a+2≠0}\end{array}\right.$,求解即可得答案.

解答 解:復(fù)數(shù)z=(1+i)(a+2i)=(a-2)+(a+2)i,
又∵復(fù)數(shù)z是純虛數(shù),
∴$\left\{\begin{array}{l}{a-2=0}\\{a+2≠0}\end{array}\right.$,
解得a=2.
故選:D.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.隨著我國經(jīng)濟(jì)的迅速發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:
年份20102011201220132014
時間代號x12345
儲蓄存款y (千億元)567810
(Ⅰ)求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)用所求回歸方程預(yù)測該地區(qū)今年的人民幣儲蓄存款.
附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$•$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若圓x2+y2-2x+4y+1=0上至少有兩個點(diǎn)到直線2x+y-c=0的距離等于1,則實(shí)數(shù)c的取值范圍為( 。
A.$(0,3\sqrt{5})$B.$[-\sqrt{5},\sqrt{5}]$C.$(-3\sqrt{5},3\sqrt{5})$D.$(0,\sqrt{5})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中,真命題是(  )
A.如果a>b,那么ac2>bc2B.如果a>b,那么a2>b2
C.如果a>b,ab>0,那么$\frac{1}{a}<\frac{1}$D.如果x≠0,那么$x+\frac{1}{x}≥2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)拋物線y2=4x上的一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知中心在坐標(biāo)原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別是F1、F2,這兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,若|PF1|=8,橢圓與雙曲線的離心率分別為e1,e2,則$\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$的取值范圍是(  )
A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓C1:x2+y2=1,圓C2:x2+y2+4x-6y+4=0,則圓C1與圓C2的位置關(guān)系是( 。
A.外離B.相切C.相交D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f′(x)是函數(shù)f(x)在R上的導(dǎo)函數(shù),函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個盒子內(nèi)裝有大小相同的紅球、白球和黑球若干個,從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或白球的概率是(  )
A.0.3B.0.55C.0.75D.0.7

查看答案和解析>>

同步練習(xí)冊答案