5.某市舉行的“國際馬拉松賽”,舉辦單位在活動推介晚會上進行嘉賓現(xiàn)場抽獎活動,抽獎盒中裝有6個大小相同的小球,分別印有“快樂馬拉松”和“美麗綠城行”兩種標志,搖勻后,參加者每次從盒中同時抽取兩個小球(取出后不再放回),若抽到的兩個球都印有“快樂馬拉松”標志即可獲獎.并停止取球;否則繼續(xù)抽取,第一次取球就抽中獲一等獎,第二次取球抽中獲二等獎,第三次取球抽中獲三等獎,沒有抽中不獲獎.活動開始后,一位參賽者問:“盒中有幾個印有‘快樂馬拉松’的小球?”主持人說:“我只知道第一次從盒中同時抽兩球,不都是‘美麗綠城行’標志的概率是
(1)求盒中印有“快樂馬拉松”小球的個數(shù);
(Ⅱ)若用η表示這位參加者抽取的次數(shù),求η的分布列及期望.

分析 (1)設印有“美麗綠城行”的球有n個,同時抽兩球不都是“美麗綠城行”標志為事件A,同時抽取兩球都是“美麗綠城行”標志的概率是$P(\overline A)=\frac{C_n^2}{C_6^2}$,由對立事件的概率能求出n.
(2)由已知,兩種球各三個,故η可能取值分別為1,2,3,分別求出相應的概率,由此能求出η的分布列和數(shù)學期望.

解答 解:(1)設印有“美麗綠城行”的球有n個,
同時抽兩球不都是“美麗綠城行”標志為事件A,
則同時抽取兩球都是“美麗綠城行”標志的概率是$P(\overline A)=\frac{C_n^2}{C_6^2}$,
由對立事件的概率:$P(A)=1-P(\overline A)=\frac{4}{5}$.
即$P(\overline A)=\frac{C_n^2}{C_6^2}=\frac{1}{5}$,解得n=3;
(2)由已知,兩種球各三個,故η可能取值分別為1,2,3,
$P(η=1)=\frac{C_3^2}{C_6^2}=\frac{1}{5}$,
$P(η=2)=\frac{C_3^2}{C_6^2}•\frac{C_3^2}{C_4^2}+\frac{C_3^1C_3^1}{C_6^2}•\frac{C_2^2}{C_4^2}=\frac{1}{5}$,
P(η=3)=1-P(η=1)$-P(η=2)=\frac{3}{5}$.
則η的分布列為:

 η 1 2 3
 P $\frac{1}{5}$ $\frac{1}{5}$ $\frac{3}{5}$
$Eη=1×\frac{1}{5}+2×\frac{1}{5}+3×\frac{3}{5}=\frac{12}{5}$.

點評 本題考查離散型隨機變量的分布列和數(shù)學期望的求法,考查概率的求法及應用,考查考查推理論證能力、運算求解能力,考查轉(zhuǎn)化化歸思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知命題p:x2-5x-6≤0;命題q:x2-6x+9-m2≤0,若¬p是¬q的充分不必要條件,則實數(shù)m的取值范圍是[-3,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知a>0,函數(shù)$f(x)=-2asin({2x+\frac{π}{6}})+2a+b$,當$x∈[{0,\frac{π}{2}}]$時,-5≤f(x)≤1
(1)求常數(shù)a,b的值;
(2)當$x∈[{0,\frac{π}{4}}]$時,求f(x)的最大值與最小值及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.為宣傳3月5日學雷鋒紀念日,成都七中在高一,高二年級中舉行學雷鋒知識競賽,每年級出3人組成甲乙兩支代表隊,首輪比賽每人一道必答題,答對則為本隊得1分,答錯不答都得0分,已知甲隊3人每人答對的概率分別為$\frac{3}{4},\frac{2}{3},\frac{1}{2}$,乙隊每人答對的概率都是$\frac{2}{3}$.設每人回答正確與否相互之間沒有影響,用X表示甲隊總得分.
(1)求隨機變量X的分布列及其數(shù)學期望E(X);
(2)求甲隊和乙隊得分之和為4的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=2lnx+ax-$\frac{4f′(2)}{x}$(a∈R)在x=2處的切線經(jīng)過點(-4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式$\frac{2xlnx}{{1-{x^2}}}>mx-1$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.過雙曲線${x^2}-\frac{y^2}{4}=1$的右焦點且斜率為k的直線,與雙曲線的右支只有一個公共點,則實數(shù)k的范圍為(  )
A.(-∞,-2]∪[2,+∞)B.[0,2]C.$[-\sqrt{2},\sqrt{2}]$D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若兩平面互相平行,第三個平面與這兩個平面分別相交于l1,l2,則這兩條直線之間的位置關(guān)系是平行(填寫“平行、相交、異面”中的某一種或者某幾種)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在二項式(1+x)n的展開式中,存在著系數(shù)之比為5:7的相鄰兩項,則指數(shù)n(n∈N*)的最小值為11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個邊長為2的大正方形,若直角三角形中較小的銳角$α=\frac{π}{6}$,現(xiàn)在向該正方形區(qū)域內(nèi)隨機地投擲一枚飛鏢,飛鏢落在小正方形內(nèi)的概率是
(  )
A.$1-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{4-\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步練習冊答案