分析 (Ⅰ)由b=1,橢圓的離心率公式即可求得a的值,求得橢圓方程及焦點(diǎn)坐標(biāo);
(Ⅰ)將直線方程代入橢圓方程,由韋達(dá)定理及三角形的面積公式,求得S1S3及S32,即可證明$\frac{{{S_1}{S_3}}}{{{S_2}^2}}$為定值.
解答 解:(Ⅰ)由題意可知b=1,橢圓的離心率e=$\frac{c}{a}=\frac{{\sqrt{6}}}{3}$,即$\frac{{{a^2}-1}}{a^2}=\frac{2}{3}$.
解得:a2=3.即$a=\sqrt{3}$.
∴$c=\sqrt{{a^2}-{b^2}}=\sqrt{2}$.
∴橢圓C的方程為$\frac{x^2}{3}+{y^2}=1$,焦點(diǎn)坐標(biāo)為$(±\sqrt{2},0)$.…(4分)
(Ⅱ)由$\left\{{\begin{array}{l}{x=my+1}\\{{x^2}+3{y^2}-3=0}\end{array}}\right.$,整理得(m2+3)y2+2my-2=0,顯然m∈R,
設(shè)E(x1,y1),F(xiàn)(x2,y2),則${y_1}+{y_2}=\frac{-2m}{{{m^2}+3}},{y_1}{y_2}=\frac{-2}{{{m^2}+3}}$,E1(3,y1),F(xiàn)1(3,y2),
∵${S_1}{S_3}=\frac{1}{2}(3-{x_1})|{y_1}|•\frac{1}{2}(3-{x_2})|{y_2}|$=$\frac{1}{4}(2-m{y_1})(2-m{y_2})|{{y_1}{y_2}}|$=$\frac{1}{4}[4-2m({y_1}+{y_2})+{m^2}{y_1}{y_2}]|{{y_1}{y_2}}|$=$\frac{1}{4}(4-2m•\frac{-2m}{{{m^2}+3}}+{m^2}•\frac{-2}{{{m^2}+3}})|{\frac{-2}{{{m^2}+3}}}|$=$\frac{{3({m^2}+2)}}{{{{({m^2}+3)}^2}}}$,
又∵${S_2}^2={[\frac{1}{2}×2|{{y_1}-{y_2}}|]^2}$=${({y_1}+{y_2})^2}-4{y_1}{y_2}$,
=$\frac{4{m}^{2}}{({m}^{2}+3)^{2}}$+$\frac{8}{{m}^{2}+3}$,
=$\frac{4{m}^{2}+8{m}^{2}+24}{({m}^{2}+3)^{2}}$=$\frac{12{m}^{2}+24}{({m}^{2}+3)^{2}}$.
∴$\frac{{{S_1}{S_3}}}{{{S_2}^2}}=\frac{{\frac{{3({m^2}+2)}}{{{{({m^2}+3)}^2}}}}}{{\frac{{12({m^2}+2)}}{{{{({m^2}+3)}^2}}}}}=\frac{1}{4}$.…(14分)
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,考查韋達(dá)定理,弦長(zhǎng)公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年陜西省高一下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:填空題
已知向量,,且,則m= ________;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com