【題目】隨著人們生活水平的不斷提高,人們對餐飲服務(wù)行業(yè)的要求也越來越高,由于工作繁忙無法抽出時間來享受美味,這樣網(wǎng)上外賣訂餐應(yīng)運而生.若某商家的一款外賣便當每月的銷售量(單位:千盒)與銷售價格(單位:元/盒)滿足關(guān)系式其中,為常數(shù),已知銷售價格為14元/盒時,每月可售出21千盒.

(1)求的值;

(2)假設(shè)該款便當?shù)氖澄锊牧、員工工資、外賣配送費等所有成本折合為每盒12元(只考慮銷售出的便當盒數(shù)),試確定銷售價格的值,使該店每月銷售便當所獲得的利潤最大.(結(jié)果保留一位小數(shù))

【答案】(1)10;(2)當銷售價格為元/盒時,商家每日銷售所獲得的利潤最大

【解析】

(1)時,,代入關(guān)系式, 解得. (2)

先求出每日銷售外賣便當所獲得的利潤,再利用導(dǎo)數(shù)求它的最大值.

(1)因為時,,代入關(guān)系式,得, 解得.

(2)由(1)可知,外賣便當每日的銷售量,

所以每日銷售外賣便當所獲得的利潤

從而.

,得,

且在上,,函數(shù)f(x)單調(diào)遞增;在上,,函數(shù)f(x)單調(diào)遞減,所以是函數(shù)f(x)內(nèi)的極大值點,也是最大值點,

所以當時,函數(shù)f(x)取得最大值.

故當銷售價格為元/盒時,商家每日銷售所獲得的利潤最大.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在下列命題中,正確命題的個數(shù)為(  )

兩個復(fù)數(shù)不能比較大;

,若,則;

是純虛數(shù),則實數(shù);

是虛數(shù)的一個充要條件是;

是兩個相等的實數(shù),則是純虛數(shù);

的一個充要條件是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分別為AC,BC的中點.
(1)求證:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)求,的值;

(II)求;

(III)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)h(x)=lnx+
(1)函數(shù)g(x)=h(2x+m),若x=1是g(x)的極值點,求m的值并討論g(x)的單調(diào)性;
(2)函數(shù)φ(x)=h(x)﹣ +ax2﹣2x有兩個不同的極值點,其極小值為M,試比較2M與﹣3的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共14分)

如圖,在四棱錐中, 平面,底面是菱形, .

()求證: 平面

)若所成角的余弦值;

)當平面與平面垂直時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=4x++3,則對于y=f(x)在x<0時,下列說法正確的是( 。
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a,b 是函數(shù) 的兩個不同的零點,且a,b,-2 這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABCDABCD是平行六面體.

(1)化簡;

(2)設(shè)M是底面ABCD的中心,N是側(cè)面BC C B對角線B C上的分點,設(shè),試求α,βγ的值.

查看答案和解析>>

同步練習冊答案