6.已知x,y>0且x+y=1,則xy的最大值是$\frac{1}{4}$.

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:x,y>0且x+y=1,則xy≤($\frac{x+y}{2}$)2=$\frac{1}{4}$,當(dāng)且僅當(dāng)x=y=$\frac{1}{2}$時取等號,
故答案為:$\frac{1}{4}$.

點評 熟練掌握基本不等式的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.為了研究某種細菌在特定環(huán)境下隨時間變化的繁殖情況,得到如下實驗數(shù)據(jù):
天數(shù)t(天)34567
繁殖個數(shù)y(千個)2.5m44.56
及y關(guān)于t的線性回歸方程$\hat y=0.85t-0.25$,則實驗數(shù)據(jù)中m的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.方程x2-5x+1=0的兩根是兩圓錐曲線的離心率,它們是( 。
A.橢圓、雙曲線B.橢圓、拋物線C.雙曲線、拋物線D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A,B滿足,集合A={x|x+y2=1,y∈R},B={y|y=x2-1,x∈R},則A∩B=[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.對于函數(shù)f(x)=ax2+2x-2a,若方程f(x)=0有相異的兩根x1,x2
(1)若a>0,且x1<1<x2,求a的取值范圍;
(2)若x1-1,x2-1同號,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)α:x2-8x+12>0,β:|x-m|≤m2,若β是α的充分非必要條件,則實數(shù)m的取值范圍是-2<m<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},記f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},f(A)∩f(B)=( 。
A.{1,2}B.{1,2,3}C.{3,5}D.{3,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.等差數(shù)列{an}中,a5=15,則a3+a4+a7+a6的值為( 。
A.30B.45C.60D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=-x2-6x-5的值域為( 。
A.[0,4]B.(-∞,4]C.(-∞,4)D.[4,+∞)

查看答案和解析>>

同步練習(xí)冊答案