12.如圖所示:有三根針和套在一根針上的若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上:①每次只能移動一個金屬片;②在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n根金屬片從1號針移到3號針最小需要移動的次數(shù)為f(n),則f(10)1023.

分析 根據(jù)移動方法與規(guī)律發(fā)現(xiàn),隨著盤子數(shù)目的增多,都是分兩個階段移動,用盤子數(shù)目減1的移動次數(shù)都移動到2柱,然后把最大的盤子移動到3柱,再用同樣的次數(shù)從2柱移動到3柱,從而完成,然后根據(jù)移動次數(shù)的數(shù)據(jù)找出總的規(guī)律求解即可.

解答 解:解:記n個金屬片從2號針移到3號針最少需要an次;
則據(jù)算法思想有:
第一步,a1=1,
第二步,a2=3,
第三步,a3=7,
第四步,a4=15,
…an=2n-1,
∴f(10)=a10=1023,
故答案為:1023.

點評 本題考查了歸納推理、圖形變化的規(guī)律問題,根據(jù)題目信息,得出移動次數(shù)分成兩段計數(shù),利用盤子少一個時的移動次數(shù)移動到2柱,把最大的盤子移動到3柱,然后再用同樣的次數(shù)從2柱移動到3柱,從而完成移動過程是解題的關(guān)鍵,本題對閱讀并理解題目信息的能力要求比較高.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{π}{2}$$≤α≤\frac{3π}{2}$,則sin2α=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{7}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單的隨機抽樣方法從該地區(qū)調(diào)查了500名老年人,結(jié)果如下:
性別
是否需要志愿者
需要4030
不需要160270
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能夠有99%的把握認(rèn)為該地區(qū)老年人是否需要志愿者提供幫助與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知△ABC的面積S=$\frac{{a}^{2}+^{2}-{c}^{2}}{4}$,則角C的大小是( 。
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在正三棱柱ABC-A1B1C1中,D為棱AA1的中點.若截面△BC1D是面積為6的直角三角形,則此三棱柱的體積為$8\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在圓x2+y2-4x+4y-2=0內(nèi),過點E(0,1)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為10$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=3x2+1,g(x)=x3-9x,.若函數(shù)f(x)+g(x)在區(qū)間[k,3]上的最大值為28,則k的取值范圍為(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-px+1(p∈R).
(1)當(dāng)p>$\frac{1}{e}$時,f(x)在區(qū)間[1,e]上的最大值為-1,求P的值;
(2)若對任意x1,x2∈(0,+∞),且x1<x2,有f(x1)-x22<f(x2)-x12成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$y=tan({x-\frac{π}{4}})$的單調(diào)遞增區(qū)間為( 。
A.$({kπ-\frac{π}{2},kπ+\frac{π}{2}})({k∈Z})$B.(kπ,kπ+π)(k∈Z)C.$({kπ-\frac{3π}{4},kπ+\frac{π}{4}})({k∈Z})$D.$({kπ-\frac{π}{4},kπ+\frac{3π}{4}})({k∈Z})$

查看答案和解析>>

同步練習(xí)冊答案