2.已知cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{π}{2}$$≤α≤\frac{3π}{2}$,則sin2α=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{7}{25}$D.$\frac{7}{25}$

分析 由已知利用兩角和的余弦函數(shù)公式,二倍角的正弦函數(shù)公式即可計算得解.

解答 解:∵cos(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(cosα-sinα)=$\frac{3}{5}$,$\frac{π}{2}$$≤α≤\frac{3π}{2}$,
∴cosα-sinα=$\frac{3\sqrt{2}}{5}$,
∴兩邊平方,利用二倍角的正弦函數(shù)公式可得:1-sin2α=$\frac{18}{25}$,
解得:sin2α=$\frac{7}{25}$.
故選:D.

點評 本題主要考查了兩角和的余弦函數(shù)公式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x),g(x)滿足f(1)=1,f'(1)=1,g(1)=2,g'(1)=1,則函數(shù)F(x)=$\frac{f(x)^{2}}{g(x)}$的圖象在x=1處的切線方程為( 。
A.3x-4y+5=0B.3x-4y-1=0.C.4x-3y-5=0D.4x-3y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$\overrightarrow{a},\overrightarrow$是向量,則“|$\overrightarrow{a}$|=|$\overrightarrow$|”是“|$\overrightarrow{a}+\overrightarrow$|=|$\overrightarrow{a}-\overrightarrow$|”的既不充分不必要條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-2x,其中a≤0
(Ⅰ) 若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x+b,求a-2b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)設(shè)函數(shù)g(x)=x2-3x+3,如果對于任意的x,t∈[0,1]都有f(x)≤g(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,中心均為原點O的橢圓與雙曲線有公共焦點,M,N是雙曲線的兩頂點.若M,O,N將橢圓長軸四等分,則橢圓與雙曲線的離心率的比值是為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(m,n),$\overrightarrow$=(1,1),滿足$\overrightarrow{a}$•$\overrightarrow$≥2且$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)≤0,則$\overrightarrow{a}$•$\overrightarrow$的取值范圍是[2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差xi與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù)yi(i=1,2,…,5),作了初步處理,得到下表:
日期3月1日3月2日3月3日3月4日3月5日
溫差xi0C)101113129
發(fā)芽率yi(顆)2325302616
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于26”的概率;
(2)請根據(jù)3月1日至3月5日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并預(yù)報3月份晝夜溫差為14度時實驗室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).
附:回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中的斜率和截距最小二乘法估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x,$\sum_{i=1}^5{{x_i}{y_i}=1351}$,$\sum_{i=1}^5{x_i^2}$=615.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,若cosA=$\frac{1}{3}$,則tanA=( 。
A.$\frac{\sqrt{2}}{4}$B.$\frac{2\sqrt{2}}{3}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖所示:有三根針和套在一根針上的若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上:①每次只能移動一個金屬片;②在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n根金屬片從1號針移到3號針最小需要移動的次數(shù)為f(n),則f(10)1023.

查看答案和解析>>

同步練習(xí)冊答案