4.已知拋物線x2=4y上一點(diǎn)A縱坐標(biāo)為4,則點(diǎn)A到拋物線焦點(diǎn)的距離為( 。
A.$\sqrt{10}$B.4C.5D.$\sqrt{15}$

分析 先根據(jù)拋物線的方程求得準(zhǔn)線的方程,進(jìn)而利用點(diǎn)A的縱坐標(biāo)求得點(diǎn)A到準(zhǔn)線的距離,進(jìn)而根據(jù)拋物線的定義求得答案.

解答 解:依題意可知拋物線的準(zhǔn)線方程為y=-1,
∴點(diǎn)A到準(zhǔn)線的距離為4+1=5,
根據(jù)拋物線的定義可知點(diǎn)A與拋物線焦點(diǎn)的距離就是點(diǎn)A與拋物線準(zhǔn)線的距離,
∴點(diǎn)A與拋物線焦點(diǎn)的距離為5,
故選:C.

點(diǎn)評 本題主要考查了拋物線的定義的運(yùn)用.考查了學(xué)生對拋物線基礎(chǔ)知識的掌握.屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖.若運(yùn)行該程序,則輸出的n的值為:(參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)( 。
A.48B.36C.30D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\;\\ y≤x\;\\ x+y+a≤0\;\end{array}\right.$且z=x+3y的最大值為4,則實(shí)數(shù)a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足(x-1)[xf′(x)-f(x)]>0,則下列關(guān)于f(x)的命題正確的是( 。
A.f(3)<f(-3)B.f(2)>f(-2)C.f(3)<f(2)D.2f(3)>3f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點(diǎn)F2,P分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點(diǎn)與右支上的一點(diǎn),O為坐標(biāo)原點(diǎn),若2$\overrightarrow{OM}=\overrightarrow{OP}+\overrightarrow{O{F_2}},|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,則該雙曲線的離心率為( 。
A.$2\sqrt{3}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( 。
A.4.5B.6C.7.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=$\sqrt{2}$,點(diǎn)E在AD上,且AE=2ED.
(Ⅰ)已知點(diǎn)F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面積是梯形ABCD面積的$\frac{4}{3}$,求點(diǎn)E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{3x-y-7≥0}\\{5x-4y≤0}\\{y≤10}\end{array}\right.$,則$\frac{y+x}{x}$的最大值為( 。
A.1B.$\frac{30}{17}$C.$\frac{47}{17}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在幾何體ABCDEF中,平面ADE⊥平面ABCD,四邊形ABCD為菱形,且∠DAB=60°,EA=ED=AB=2EF,EF∥AB,M為BC中點(diǎn).
(Ⅰ)求證:FM∥平面BDE;
(Ⅱ)求直線CF與平面BDE所成角的正弦值;
(Ⅲ)在棱CF上是否存在點(diǎn)G,使BG⊥DE?若存在,求$\frac{CG}{CF}$的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案