A. | $\frac{{3\sqrt{3}}}{8}$ | B. | 2 | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{3\sqrt{3}}}{4}$ |
分析 由正弦定理化簡已知等式可得:(2sinB-sinA)cosC=sinCcosA,利用三角形內(nèi)角和定理整理可得2sinBcosC=sinB,由sinB≠0,解得cosC=$\frac{1}{2}$,結(jié)合范圍0<C<π,可求C的值.由余弦定理得(a+b)-3ab-9=0,聯(lián)立解得ab的值,利用三角形面積公式即可得解.
解答 由于(2b-a )cosC=ccosA,由正弦定理得(2sinB-sinA)cosC=sinCcosA,
即2sinBcosC=sinAcosC+sinCcosA,即2sinBcosC=sin(A+C),可得:2sinBcosC=sinB,
因為sinB≠0,所以cosC=$\frac{1}{2}$,因為0<C<π,所以C=$\frac{π}{3}$.由余弦定理得,a2+b2-ab=9,即(a+b)-3ab-9=0…①,
又$a+b=\sqrt{6}ab$…②,
將①式代入②得2(ab)2-3ab-9=0,解得 ab=$\frac{3}{2}$或ab=-1(舍去),
所以S△ABC=$\frac{1}{2}$absinC=$\frac{3\sqrt{3}}{8}$,
故選:A.
點評 題主要考查了正弦定理,余弦定理,三角形面積公式,余弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P<Q | B. | P=Q | C. | P>Q | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 4 | C. | -4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{7}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com