分析 (1)利用中位線定理即可得出DE∥BC,故而DE∥平面PBC;
(2)連結(jié)PD,又AB⊥PD,AB⊥DE得出AB⊥平面PAB,故而AB⊥PE;
(3)利用面面垂直的性質(zhì)得出PD⊥平面ABC,計算PD,則VP-BCE=$\frac{1}{2}$VP-ABC.
解答 證明:(1)∵D,E分別為AB,AC的中點,
∴DE∥BC,
又DE?平面PBC,BC?平面PBC,
∴DE∥平面PBC.
(2)連接PD,
∵DE∥BC,又∠ABC=90°,
∴DE⊥AB,
又PA=PB,D為AB中點,
∴PD⊥AB,
又PD∩DE=D,PD?平面PDE,DE?平面PDE,
∴AB⊥平面PDE,又PE?平面PDE,
∴AB⊥PE.
(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD?平面PAB,
∴PD⊥平面ABC,
∵△PAB是邊長為2的等邊三角形,∴PD=$\sqrt{3}$,
∵E是AC的中點,
∴${V_{P-BEC}}=\frac{1}{2}{V_{P-ABC}}=\frac{1}{2}×\frac{1}{3}×\frac{1}{2}×2×3×\sqrt{3}=\frac{{\sqrt{3}}}{2}$.
點評 本題考查了線面平行,線面垂直的判定,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25 | B. | 50 | C. | 100 | D. | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{4\sqrt{3}}}{5}$ | B. | $\frac{{3\sqrt{3}}}{5}$ | C. | $-\frac{{3\sqrt{3}}}{5}$ | D. | $-\frac{{4\sqrt{3}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{3}$ | C. | $1+\frac{1}{2}+\frac{1}{3}$ | D. | 都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2017}{2018}$ | B. | $\frac{2018}{2017}$ | C. | $\frac{2019}{2018}$ | D. | $\frac{2018}{2019}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2<y | B. | |x|<$\sqrt{y}$ | C. | -x<$\sqrt{y}$ | D. | x<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3\sqrt{3}}}{8}$ | B. | 2 | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{3\sqrt{3}}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com