15.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知∠B=30°,△ABC的面積為$\frac{3}{2}$,且sinA+sinC=2sinB,則b的值為( 。
A.4+2$\sqrt{3}$B.4-2$\sqrt{3}$C.$\sqrt{3}$-1D.$\sqrt{3}$+1

分析 先根據(jù)三角形面積公式求得ac的值,利用正弦定理及題設(shè)中sinA+sinC=2sinB,可知a+c的值,代入到余弦定理中求得b.

解答 解:由已知可得:$\frac{1}{2}$acsin30°=$\frac{3}{2}$,解得:ac=6,
又sinA+sinC=2sinB,由正弦定理可得:a+c=2b,
由余弦定理:b2=a2+c2-2accosB=(a+c)2-2ac-$\sqrt{3}$ac=4b2-12-6$\sqrt{3}$,
∴解得:b2=4+2$\sqrt{3}$,
∴b=1+$\sqrt{3}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了余弦定理和正弦定理的應(yīng)用,作為解三角形的常用定理,應(yīng)用熟練記憶這兩個(gè)定理及其變式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過12噸且不超過14噸時(shí),超過12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過14噸時(shí),超過14噸部分按7.80元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
( i)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過12噸的概率;
(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)y(元)與月份x的散點(diǎn)圖,其擬合的線性回歸方程是$\widehaty=2x+33$.若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x-3)ex+ax,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a∈[0,e)時(shí),設(shè)函數(shù)f(x)在(1,+∞)上的最小值為g(a),求函數(shù)g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,F(xiàn)1,F(xiàn)2為左,右焦點(diǎn),以F1,F(xiàn)2為直徑的圓與橢圓在第一、三象限的交點(diǎn)分別為A、B,若直線AB與直線x+$\sqrt{3}$y-7=0互相垂直,則橢圓的離心率為(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\sqrt{3}$-1D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-2),點(diǎn)B(1,-1),P為圓x2+y2=2上一動(dòng)點(diǎn),則$\frac{PB}{PA}$的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)A(-4,0),B(-1,0),C(-4,3),動(dòng)點(diǎn)P、Q滿足$\frac{|PA|}{|PB|}$=$\frac{|QA|}{|QB|}$=2,則|$\overrightarrow{CP}$+$\overrightarrow{CQ}$|取值范圍是 ( 。
A.[1,16]B.[6,14]C.[4,16]D.[$\sqrt{13}$,3$\sqrt{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≥a}\\{{x}^{3}-3x,x<a}\end{array}\right.$若函數(shù)g(x)=2f(x)-ax恰有2個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(-$\frac{3}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知i是虛數(shù)單位,復(fù)數(shù)z1=3+yi(y∈R),z2=2-i,且$\frac{z_1}{z_2}=1+i$,則y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的離心率為$\sqrt{5}$,則拋物線x2=4y的焦點(diǎn)到雙曲線的漸近線的距離是(  )
A.$\frac{{\sqrt{5}}}{10}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{4\sqrt{5}}}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案