試卷編號 | n1 | n2 | n3 | n4 | n5 | n6 | n7 | n8 | n9 | n10 |
試卷得分 | 109 | 118 | 112 | 114 | 126 | 128 | 127 | 124 | 126 | 120 |
試卷編號 | n11 | n12 | n13 | n14 | n15 | n16 | n17 | n18 | n19 | n20 |
試卷得分 | 135 | 138 | 135 | 137 | 135 | 139 | 142 | 144 | 148 | 150 |
分析 (1)根據(jù)分層抽樣的抽取編號為等差數(shù)列可知n5和n9的值;
(2)根據(jù)莖葉圖的數(shù)據(jù)集中程度判斷均值和方差;
(3)根據(jù)正態(tài)分布概率可得146分以上才能進入前15名,利用超幾何分布概率公式得出分布列,從而可求出數(shù)學(xué)期望.
解答 解:(1)126分的試卷編號分別為48,88.
(2)通過莖葉圖可知:甲校學(xué)生成績的平均分高于乙校學(xué)生成績的平均分,甲校學(xué)生成績比較集中,乙校學(xué)生成績比較分散.
(3)∵$\frac{15}{10000}=0.0015$,根據(jù)正態(tài)分布可知:P(74<X<146)=99.7%,
∴$P(X≥146)=\frac{1-99.7%}{2}=0.0015$,即前15名的成績?nèi)吭?46分以上(含146分).
根據(jù)莖葉圖可知這40人中成績在146分以上(含146分)的有3人,而成績在140分以上(含140分)的有8人.
∴ξ的取值為0,1,2,3.
$P(ξ=0)=\frac{C_5^3}{C_8^3}=\frac{5}{28}$,$P(ξ=1)=\frac{C_5^2•C_3^1}{C_8^3}=\frac{15}{28}$,$P(ξ=2)=\frac{C_5^1•C_3^2}{C_8^3}=\frac{15}{56}$,$P(ξ=3)=\frac{C_3^3}{C_8^3}=\frac{1}{56}$,
所以ξ的分布列為
ξ | 0 | 1 | 2 | 3 |
P | $\frac{5}{28}$ | $\frac{15}{28}$ | $\frac{15}{56}$ | $\frac{1}{56}$ |
點評 本題考查了分層抽樣原理,莖葉圖,隨機變量的分布列,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為2π | |
B. | f(x)在[$\frac{5π}{8}$,$\frac{9π}{8}$]單調(diào)遞減 | |
C. | f(x)的圖象關(guān)于直線x=-$\frac{π}{6}$對稱 | |
D. | 將f(x)的圖象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$個單位長度后會得到一個奇函數(shù)的圖象 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${(x+\sqrt{2})^2}+{(y+1)^2}=2$ | B. | ${(x+1)^2}+{(y+\sqrt{2})^2}=2$ | C. | ${(x-\sqrt{2})^2}+{(y-1)^2}=2$ | D. | ${(x-1)^2}+{(y-\sqrt{2})^2}=2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com