1.已知橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$上一點(diǎn)M到左焦點(diǎn)F1的距離為6,N是MF1的中點(diǎn),則|ON|=2.

分析 利用橢圓的定義及中位線定理即可求得丨ON丨的值.

解答 解:設(shè)橢圓的焦點(diǎn)F2,連結(jié)F2M,由M為F1F2的中點(diǎn),
則ON為三角形F1F2M的中位線,
則丨ON丨=$\frac{1}{2}$丨MF2丨,
由橢圓的定義可知:丨MF1丨+丨MF2丨=2a=10,丨MF1丨=6,
則丨MF2丨=4,
則丨ON丨=2,
故答案為:2.

點(diǎn)評(píng) 本題考查橢圓的定義,三角形的中位線定理的應(yīng)用,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.我國(guó)南宋時(shí)期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出了計(jì)算多項(xiàng)式f(x)=anxn+an-1xn-1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an-1)x+an-2)x+…+a1)x+a0,首先計(jì)算最內(nèi)層一次多項(xiàng)式的值,然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,這種算法至今仍是比較先進(jìn)的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執(zhí)行框內(nèi)應(yīng)填入(  )
A.v=vx+aiB.v=v(x+aiC.v=aix+vD.v=ai(x+v)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若曲線f(x)=ex+asinx在x=0處的切線與直線y=3x平行,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(2a-c)cosB.
(Ⅰ)求B;
(Ⅱ)若BC=6,AC邊上的中線BD的長(zhǎng)為7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=(n2-3n+3)xn+1 為冪函數(shù),且f(x) 為奇函數(shù).(1)求函數(shù)f(x) 的解析式;(2)解不等式f(x+1)+f(3-2x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)f(x)是定義在R上的偶函數(shù),且在(-∞,0]上是增函數(shù),設(shè)$a=f({log_4}7),b=f({log_{\frac{1}{2}}}3),c=f({2^{\sqrt{2}}})$,則a,b,c的大小關(guān)系是( 。
A.c<a<bB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.凸k邊形的對(duì)角線為f(k)條時(shí),則凸k+1邊形的對(duì)角線為f(k+1)=f(k)+k-1條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,輸入n=5時(shí),則輸出的S=( 。
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知一個(gè)平行四邊形三個(gè)頂點(diǎn)為A(0,-9),B(2,6),C(4,5),求第四個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案