2.已知三點(diǎn)A(2,3),B(-1,-1),C(6,k),其中k為常數(shù).若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角的余弦值為0或-$\frac{24}{25}$,.

分析 根據(jù)向量長(zhǎng)度相等建立方程關(guān)系求出k的值,結(jié)合向量夾角公式進(jìn)行求解即可.

解答 解:∵$\overrightarrow{AB}$=(-3,-4),$\overrightarrow{AC}$=(4,k-3),
則|$\overrightarrow{AB}$|=5,|$\overrightarrow{AC}$|=$\sqrt{16+(k-3)^{2}}$,
由|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|得$\sqrt{16+(k-3)^{2}}$=5,
得(k-3)2=9,則k-3=3或k-3=-3,
即k=6或k=0,
若k=6,則C(6,6),$\overrightarrow{AC}$=(4,3),
則cos<$\overrightarrow{AB}$,$\overrightarrow{AC}$>=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{-3×4-4×3}{5×5}$=-$\frac{24}{25}$,
若k=0,則C(6,-1),$\overrightarrow{AC}$=(4,-3),
則cos<$\overrightarrow{AB}$,$\overrightarrow{AC}$>=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{-3×4-4×(-3)}{5×5}$=0,
故答案為:0或-$\frac{24}{25}$,

點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)向量長(zhǎng)度公式以及夾角公式是解決本題的關(guān)鍵.注意要對(duì)k進(jìn)行分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,它的一個(gè)頂點(diǎn)恰好是拋物線x2=8$\sqrt{3}$y的焦點(diǎn).
(I)求橢圓C標(biāo)準(zhǔn)方程;
(Ⅱ)直線x=2,與橢圓交于P,Q兩點(diǎn),A,B是橢圓上位于直線x=2兩側(cè)的動(dòng)點(diǎn).
①若直線AB的斜率為$\frac{1}{2}$,求四邊形APBQ面積的最大值;
②當(dāng)動(dòng)點(diǎn)A,B滿足∠APQ=∠BPQ時(shí),試問(wèn)直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知三條不重合的直線l,m,n與平面α,下面結(jié)論正確的是( 。
A.l∥α,m∥α,則l∥mB.l⊥α,m⊥α,則l∥mC.l⊥n,m⊥n,則l∥mD.l?α,m∥α,則l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖四邊形ABCD是正方形,延長(zhǎng)CD至E,使得DE=CD.若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿正方形的邊按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到A點(diǎn),其中$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AE}$,下列五個(gè)命題中正確的是①②
①點(diǎn)P與點(diǎn)B重合時(shí),λ+μ=1;
②當(dāng)點(diǎn)P為BC的中點(diǎn)時(shí),λ+μ=2;
③λ+μ的最大值為4; 
④λ+μ的最小值為-1;
⑤滿足λ+μ=1的點(diǎn)P有且只有一個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知定義在R上的函數(shù)f(x)滿足f(-x)=f(x),且當(dāng)x<0,f(x)=3x+1,若a=2${\;}^{\frac{4}{3}}$,b=4${\;}^{\frac{2}{5}}$,c=25${\;}^{\frac{1}{3}}$,則有(  )
A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(b)<f(a)<f(c)D.f(c)<f(a)<f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)A、B是非空集合,定義A⊙B={x|x∈A,且x∉B},已知A={x|x2-x-2≤0},B={x|y=$\frac{1}{\sqrt{1-x}}$},則A⊙B=( 。
A.B.[-1,2]C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(2)已知0<a1<a2<a3,求使得2比2-aix(i=1,2,3)遠(yuǎn)離1都成立的x取值范圍;
(3)設(shè)0<x<1,且a≠1,則loga(1-x)比loga(1+x)那個(gè)遠(yuǎn)離零?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)設(shè)點(diǎn)M為棱PD中點(diǎn),在面ABCD內(nèi)是否存在點(diǎn)N,使得MN⊥平面ABCD?若存在,
請(qǐng)證明;若不存在,請(qǐng)說(shuō)明理由;
(2)求二面角D-PE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}}\right.$,則$\frac{y}{x}$的最大值為( 。
A.-2B.-3C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案