7.從拋物線y2=4x圖象上一點P引拋物線準線的垂線,垂足為M,且|PM|=5,設(shè)拋物線焦點為F,則△PFM的面積為10.

分析 設(shè)P(x0,y0),通過|PM|=x0+$\frac{p}{2}$,求出P的坐標,然后求解三角形的面積.

解答 解:拋物線y2=4x中p=2,設(shè)P(x0,y0),則|PM|=x0+$\frac{p}{2}$,即5=x0+1,得x0=4,所以y0=±4,所以${S}_{△PFM}=\frac{1}{2}|PM||{y}_{0}|$=10.
故答案為:10.

點評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某四面體的三視圖如圖所示,則該四面體的外接球表面積為( 。
A.29πB.64πC.41πD.48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱體,左右兩端均為半球形,按照設(shè)計要求中間圓柱體部分的容積為16π立方米,且L≥2r.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為1千元,半球形部分每平方米建造費用為$\frac{c}{2}(c>0)$千元.設(shè)該容器的建造費用為y千元.(圓柱體體積公式為V=πr2l,球的體積公式為$V=\frac{4}{3}π{r^3}$,圓柱側(cè)面積公式為S=2πrl,球的表面積公式為S=4πr2
(1)寫出y關(guān)于r的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該容器的建造費用最小時的r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.從0,1,2,3,4,5這六個數(shù)字中取兩個偶數(shù)和兩個奇數(shù)組成沒有重復(fù)數(shù)字的四位數(shù).試問:
(1)能組成多少個不同的四位數(shù)?
(2)四位數(shù)中,兩個偶數(shù)排在一起的有幾個?(所有結(jié)果均用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|x2+x-6<0},B={y|y=2x-1,x≤2},則A∩B=( 。
A.(-3,3]B.(-1,3)C.(-3,2]D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=2,an+1=2an-1
(1)求證數(shù)列{an-1}是等比數(shù)列
 (2)設(shè)bn=n•(an-1),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=2cosx($\sqrt{3}$sinx+cosx)-1
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若y=f(x+φ)關(guān)于直線x=$\frac{π}{3}$對稱,求|φ|的最小值;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時,若方程|f(x)|-m=0有4個不同的實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)點A(-1,2),B(2,3),C(3,-1),且$\overrightarrow{AD}=2\overrightarrow{AB}-3\overrightarrow{BC}$則點D的坐標為( 。
A..(2,16)B..(-2,-16)C..(4,16)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,AB1與A1B相交于點D,E是CC1上的點,且DE∥平面ABC,BC=1,BB1=2.
(Ⅰ)證明:B1E⊥平面ABE
(Ⅱ)若異面直線AB和A1C1所成角的正切值為$\frac{\sqrt{2}}{2}$,求二面角A-B1E-A1的余弦值.

查看答案和解析>>

同步練習(xí)冊答案