分析 (1)先根據(jù)奇函數(shù)求出c的值,再根據(jù)導(dǎo)函數(shù)f'(x)的最小值求出b的值,最后依據(jù)在x=1處的導(dǎo)數(shù)等于切線的斜率求出c的值即可;
(2)先求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,求得區(qū)間即為單調(diào)區(qū)間,根據(jù)極值與最值的求解方法,將f(x)的各極值與其端點的函數(shù)值比較,其中最大的一個就是最大值,最小的一個就是最小值.
解答 解:(1)∵f(x)為奇函數(shù),
∴f(-x)=-f(x),
即-ax3-bx+c=-ax3-bx-c,
∴c=0,
∵f'(x)=3ax2+b的最小值為-12,
∴b=-12,
又直線x-6y-7=0的斜率為$\frac{1}{6}$,
因此,f'(1)=3a+b=-6,
∴a=2,b=-12,c=0.
(2)f(x)=2x3-12x.f′(x)=6x2-12=6(x+$\sqrt{2}$)(x-$\sqrt{2}$),
列表如下:
x | (-∞,-$\sqrt{2}$) | -$\sqrt{2}$ | (-$\sqrt{2}$,$\sqrt{2}$) | $\sqrt{2}$ | ($\sqrt{2}$,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大 | 遞減 | 極小 | 遞增 |
點評 本題考查函數(shù)的奇偶性、單調(diào)性、二次函數(shù)的最值、導(dǎo)數(shù)的應(yīng)用等基礎(chǔ)知識,以及推理能力和運算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x-2 | B. | y=x+2 | C. | y=x-2(1≤x≤3) | D. | y=x+2(0≤y≤1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{14}$ | B. | $\frac{25}{56}$ | C. | $\frac{37}{56}$ | D. | $\frac{23}{28}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com