【題目】“垛積術”(隙積術)是由北宋科學家沈括在《夢溪筆談》中首創(chuàng),南宋科學家楊輝、元代數學家朱世杰豐富和發(fā)展的一類數列求和方法,有菱草垛、方垛、三角垛等等,某倉庫中部分貨物堆放成“菱草垛”,自上而下,第一層1件,以后每一層比上一層多1件,最后一層是件,已知第一層貨物單價1萬元,從第二層起,貨物的單價是上一層單價的,若這堆貨物總價是萬元,則的值為________
科目:高中數學 來源: 題型:
【題目】已知兩點A(﹣2,0)、B(2,0),動點P滿足.
(1)求動點P的軌跡Ω的方程;
(2)若橢圓上點(x0,y0)處的切線方程是:
①過直線l:x=4上一點M引Ω的兩條切線,切點分別是P、Q,求證:直線PQ恒過定點N;
②是否存在實數λ,使得|PN|+|QN|=λ|PN||QN|?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知曲線的參數方程為(為參數),以原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為:,直線的極坐標方程為.
(Ⅰ)寫出曲線的極坐標方程,并指出它是何種曲線;
(Ⅱ)設與曲線交于,兩點,與曲線交于,兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(13分)設{an}是公比為正數的等比數列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設{bn}是首項為1,公差為2的等差數列,求數列{an+bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,底面 ABCD為矩形,側面為正三角形,且平面平面 E 為 PD 中點,AD=2.
(1)證明平面AEC丄平面PCD;
(2)若二面角的平面角滿足,求四棱錐 的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個結論:
兩條直線和同一個平面垂直,則這兩條直線平行;
兩條直線沒有公共點,則這兩條直線平行;
兩條直線都和第三條直線垂直,則這兩條直線平行;
一條直線和一個平面內任意直線沒有公共點,則這條直線和這個平面平行.
其中正確的個數為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com