數(shù)列{an}滿足:a1=2,an=an-1+2n-1(n≥2),則該數(shù)列的通項公式是
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由已知得an-an-1=2n-1(n≥2),由此利用累加法能求出該數(shù)列的通項公式.
解答: 解:∵數(shù)列{an}滿足:a1=2,an=an-1+2n-1(n≥2),
∴an-an-1=2n-1(n≥2),
∴an=a1+a2-a1+a3-a2+…+an-an-1
=2+3+5+7+…+(2n-1)
=2+
(n-1)(3+2n-1)
2

=n2+1.
故答案為:an=n2+1
點評:本題考查數(shù)列的通項公式的求法,是中檔題,解題時要認(rèn)真審題,注意累加法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=-
3
4
x+
5
4
與圓x2+y2=4相交于A、B兩點,則弦AB的長度為( 。
A、3
3
B、2
3
C、
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式a≥|x+1|-|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1-an+an-1=0(n≥2),且a1=1,a2=-1,則a2013的值為(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個位上的數(shù)字都小,則稱這個數(shù)為凹數(shù),如524,746等都是凹數(shù),那么各個數(shù)位上無重復(fù)數(shù)字的三位凹數(shù)有( 。﹤.
A、72B、120
C、240D、360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對任意的正數(shù)x,y都有f(x•y)=f(x)+f(y),若數(shù)列{an}的前n項和為Sn,且滿足f(Sn+2)-f(an)=f(3)(n∈N*),則an為( 。
A、2n-1
B、n
C、2n-1
D、(
3
2
n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任意m,n∈N*,都有:
(1)f(m,n+1)=f(m,n)+2;
(2)f(m+1,1)=2f(m,1).
則f(2014,2015)的值為( 。
A、22013+2014
B、22013+4028
C、22014+2014
D、22014+4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品的總成本y(萬元)與產(chǎn)量x(臺)之間的函數(shù)關(guān)系是y=3000+20x-0.1x2(0<x<240,x∈N+),若每臺產(chǎn)品的售價為25萬元,則生產(chǎn)者不虧本時(銷售收入不小于總成本)的最低產(chǎn)量是
 
臺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C過三點O(0,0),M(1,1),N(4,2)
(1)求圓C的方程;
(2)求圓C的圓心坐標(biāo)及半徑.

查看答案和解析>>

同步練習(xí)冊答案