分析 (Ⅰ)設(shè)A1B與AB1交于點O,連接CO,ON.只需證明四邊形CMNO是平行四邊形,即可得MN∥CO.直線NM∥平面CAB1
(Ⅱ)只需證明CO⊥AB1,BA1⊥CO.即可證得直線BA1⊥平面CAB1
解答 證明:(Ⅰ)設(shè)A1B與AB1交于點O,連接CO,ON.
因為四邊形ABB1A1是平行四邊形,所以是O是AB1的中點,又N是A1B1的中點,
所以.ON$∥A{A}_{1},ON=\frac{1}{2}A{A}_{1}$
又因為M是CC1的中點,所以$CM∥A{A}_{1},CM=\frac{1}{2}A{A}_{1}$.
所以四邊形CMNO是平行四邊形,所以MN∥CO.
又因為MN?平面CAB1,CO?CAB1平面,
所以直線NM∥平面CAB1.…(6分)
(Ⅱ)因為BA=BB1,所以平行四邊形ABB1A1是菱形,所以BA1⊥AB1.
因為CA=CB1,O是AB1的中點,所以CO⊥AB1,
又CA⊥CB1,∴CO=AO.
又因為BA=BC,所以△BOC≌△BOA,
所以∠BOC=∠BOA,故BO⊥CO,即BA1⊥CO.
又AB1∩CO=O,AB1?平面CAB1,CO?平面CAB1,
所以直線BA1⊥平面CAB1.…(12分)
點評 本題考查了空間線面平行,線面垂直的判定,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“?x0∈R,sinx0>1”的否定是“?x∈R,sinx>1” | |
B. | “若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0” | |
C. | 在△ABC中,A>B是sinA>sinB的充分不必要條件 | |
D. | 若p∧(¬q)為假,p∨(¬q)為真,則p,q同真或同假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
工作日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
限行車牌尾號 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b,c>d,則ac>bd | B. | 若ac>bc,則a>b | ||
C. | 若a>b,c>d,則a-c>b-d | D. | 若$\frac{a}{{c}^{2}}$<$\frac{{c}^{2}}$,則a<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com