已知數(shù)列{an}的前n項和為Sn,且滿足Sn=2an-n,(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項和為Tn,求滿足不等式
Tn-2
2n-1
≥128的最小n值.
考點:數(shù)列與不等式的綜合,數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)運用等比數(shù)列的公式性質(zhì)求解,
(2)運用求和公式列出來,再用錯位相減的方法求出數(shù)列的和,最后解不等式確定n的范圍,及最小值.
解答: 解:(1)因為Sn=2an-n,
所以Sn-1=2an-1-(n-1),(n≥2,n∈N*),
兩式相減得an=2an-1+1,
所以an+1=2(an-1+1),(n≥2,n∈N*),
又因為a1+1=2,所以{an+1}是首項為2,公比為2的等比數(shù)列,
所以an+1=2n,所以an=2n-1
(2)因為bn=(2n+1)an+2n+1,
所以bn=(2n+1)•2n
可以得到:Tn=3×2+5×22+7×23+…+(2n-1)•2n-1+(2n+1)•2n,①
2Tn=3×22+5×23+…+(2n-1)•2n+(2n+1)•2n+1,②
①-②得:-Tn=3×2+2(22+23+ …+2n)-(2n+1)•2n+1
=6+2×
22-2n×2
1-2
-(2n+1)•2n+1

=-2+2n+2-(2n+1)•2n+1
=-2-(2n-1)•2n+1
所以Tn=2+(2n-1)•2n+1
Tn-2
2n-1
≥128
,
2+(2n-1)•2n+1-2
2n-1
≥128
,
2^n+1,所以n+1≥7,解得n≥6,
所以滿足不等式
Tn-2
2n-1
≥128
,的最小n值6,
點評:本題考查了數(shù)列的概念公式,錯位相減求和,綜合不等式解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)表示相等函數(shù)的是( 。
A、y=
x2-1
x-1
與 y=x+1
B、y=
3-x3
-1
與y=-x-1
C、y=x0與 y=1
D、y=
x2
與y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
3
x+y-2
3
=0的傾斜角為(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,E、F分別為PC、PD的中點.
(1)求證:DE⊥平面PBC
(2)在棱BC上確定一點G,使得PA∥面EFG,并寫出證明過程
(3)在(2)成立的條件下,求二面角F-EG-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x≤4},B={x|x>a}.
(Ⅰ)A∩B=∅,求實數(shù)a的取值范圍;
(Ⅱ)A∩B≠∅且A∩B≠A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y>0,x+2y=10,求ω=x2+y2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公差不為0的等差數(shù)列{an}中,a1=-12,且a8,9,a11依次成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的公差;
(Ⅱ)設(shè)Sn為數(shù)列{an}的前n項和,求Sn的最小值,并求出此時的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD中,|
AB
|=4,|
AD
|=6,∠DAB=
π
3
,
AE
=
2
3
AD
,
DF
=
FC

(1)求
AF
BE
的值.
(2)求向量
AF
與向量
BE
的夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+a
3x-1

(1)求f(x)的定義域;
(2)當(dāng)a為何值時,f(x)為奇函數(shù);
(3)討論(2)中函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案