17.通過(guò)隨機(jī)詢(xún)問(wèn)100名性別不同的大學(xué)生是否愛(ài)好踢毽子,得到如右的列聯(lián)表,經(jīng)計(jì)算,統(tǒng)計(jì)量K2的觀測(cè)值k2≈5.762,參照附表,則所得到的統(tǒng)計(jì)學(xué)結(jié)論為:有( 。┌盐照J(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.
總計(jì)
愛(ài)好104050
不愛(ài)好203050
總計(jì)3070100
A.0.25%B.2.5%C.97.5%D.99.75%

分析 根據(jù)題意,由所給的觀測(cè)值同參照臨界值對(duì)照表比較,即可得答案.

解答 解:根據(jù)題意,統(tǒng)計(jì)量K2的觀測(cè)值k2≈5.762>5.024,
參照臨界值對(duì)照表,P(k2>5.024)≈0.025,
可得有97.5%的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.
故選:C.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,關(guān)鍵是理解獨(dú)立性檢驗(yàn)的思想與判斷方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某景區(qū)欲建兩條圓形觀景步道M1,M2(寬度忽略不計(jì)),如圖所示,已知AB⊥AC,AB=AC=AD=60(單位:米),要求圓M與AB,AD分別相切于點(diǎn)B,D,圓M2與AC,AD分別相切于點(diǎn)C,D.
(1)若$∠BAD=\frac{π}{3}$,求圓M1,M2的半徑(結(jié)果精確到0.1米)
(2)若觀景步道M1,M2的造價(jià)分別為每米0.8千元與每米0.9千元,則當(dāng)∠BAD多大時(shí),總造價(jià)最低?最低總造價(jià)是多少?(結(jié)果分別精確到0.1°和0.1千元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,a、b、c分別是三個(gè)內(nèi)角A、B、C的對(duì)邊,若向量$\overrightarrow x$=$(a,\sqrt{3}b)$與向量$\overrightarrow y=(cosA,sinB)$共線
(1)求角A;
(2)若a=2,求b+c得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若曲線${C_1}:y=1+\sqrt{-{x^2}+2x}$與曲線C2:(y-1)•(y-kx-2k)=0有四個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍為($\frac{1}{2}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知圓${C_1}:{x^2}+{y^2}=4$與圓${C_2}:{(x-1)^2}+{(y-3)^2}=4$,過(guò)動(dòng)點(diǎn)P(a,b)分別作圓C1、圓C2的切線PM,PN,( M,N分別為切點(diǎn)),若|PM|=|PN|,則a2+b2-6a-4b+13的最小值是$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,設(shè)$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{BC}=\overrightarrow b$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=-1$,則$|{\overrightarrow{AC}}|$=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.$\sqrt{1-2cos(\frac{π}{2}+3)sin(\frac{π}{2}-3)}$=( 。
A.-sin3-cos3B.sin3-cos3C.sin3+cos3D.cos3-sin3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知正項(xiàng)等比數(shù)列{an}的公比為q,且$\frac{S_3}{a_3}=3$,則公比q=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(1)已知f(x+1)=4x2+2x+1求f(x)的解析式.
(2)若函數(shù)f(x)是二次函數(shù)且滿足f(x+2)-2f(x)=x2-5x,求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案