3.在($\sqrt{3}$x+$\root{3}{2}$)100展開式所得的x的多項式中,系數(shù)為有理數(shù)的項有(  )
A.16項B.17項C.24項D.50項

分析 根據(jù)二項式($\sqrt{3}$x+$\root{3}{2}$)100展開式的通項公式,寫出x的系數(shù),分析系數(shù)特點,求出滿足條件的r有多少即可.

解答 解:($\sqrt{3}$x+$\root{3}{2}$)100展開式中,通項公式為
Tr+1=C100r•($\sqrt{3}$x)100-r•($\root{3}{2}$)r
=C100r•($\sqrt{3}$)100-r•($\root{3}{2}$)r•x100-r,
若x的系數(shù)為有理數(shù),即($\sqrt{3}$)100-r•($\root{3}{2}$)r為有理數(shù),
則100-r為2的倍數(shù),r為3的倍數(shù),
設(shè)r=3n,則100-3n為2的整數(shù)倍,
分析可得,有r=0,6,12,18,24,…,96共17個符合條件,
故選:B.

點評 本題考查了二項式定理的應(yīng)用問題以及整數(shù)的整除性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)$y=sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{1}{6}$個周期后,所得圖象對應(yīng)的函數(shù)g(x)的一個單調(diào)增區(qū)間為(  )
A.[0,π]B.$[{-\frac{π}{2},0}]$C.$[{0,\frac{π}{2}}]$D.[-π,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若變量x,y滿足條件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-6≤0\\ x-1≥0\end{array}\right.$,則xy的取值范圍是( 。
A.[0,5]B.$[{5,\frac{35}{4}}]$C.$[{0,\frac{35}{4}}]$D.[0,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若i為虛數(shù)單位,則$\frac{1+i}{3-i}$-$\frac{i}{3+i}$=( 。
A.$\frac{2-i}{10}$B.$\frac{1+i}{10}$C.$\frac{4+7i}{10}$D.$\frac{4-i}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知正三棱柱ABC-A1B1C1所有棱長均為2,D、E分別是BC、BB1中點.
(1)證明:C1E⊥面ADC1;
(2)求二面角A1-C1D-A的余弦值;
(3)若線段AA1上存在一點P,滿足直線CE和直線C1P異面直線成角的余弦值是$\frac{\sqrt{2}}{5}$,求A1P長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.A={a|f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定義域為R},B={a|3a2+5a-2<0},則A∩B=( 。
A.(0,$\frac{4}{9}$)B.[0,$\frac{1}{3}$)C.(-2,0)D.($\frac{1}{3}$,$\frac{4}{9}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若x6=a0+a1(2x-1)+a2(2x-1)2+…+a6(2x-1)6,則a2=$\frac{15}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.復(fù)數(shù)z=(m2-m-4)+(m2-5m-6)i(m∈R),如果z是純虛數(shù),那么m=$\frac{1±\sqrt{17}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)D為△ABC中BC邊上的中點,且O為AD邊上靠近點A的三等分點,則( 。
A.$\overrightarrow{BO}=-\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}$B.$\overrightarrow{BO}=\frac{1}{6}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AC}$C.$\overrightarrow{BO}=\frac{5}{6}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}$D.$\overrightarrow{BO}=-\frac{1}{6}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$

查看答案和解析>>

同步練習(xí)冊答案