2.若∅?{x|x2≤a,a∈R},則實(shí)數(shù)a的取值范圍是[0,+∞).

分析 根據(jù)元素與集合的關(guān)系進(jìn)行判斷

解答 解:由題意,∅?{x|x2≤a,a∈R},
可知,x2≤a必有解,
∴a≥0.
故答案為[0,+∞)

點(diǎn)評(píng) 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$sin(\frac{2π}{3}+α)=\frac{1}{3}$,則$cos(\frac{5π}{6}-α)$=( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{1}{2}$,F(xiàn)1,F(xiàn)2分別為左右焦點(diǎn),B1為短軸的一個(gè)端點(diǎn),△B1F1F2的面積為$\sqrt{3}$
(Ⅰ)求橢圓E的方程
(Ⅱ)若A,B,C,D是橢圓上異于頂點(diǎn)且不重合的四個(gè)點(diǎn),AC于BD相交于點(diǎn)F1,且$\overrightarrow{AC}•\overrightarrow{BD}$=0,求$\frac{|AC|}{|BD|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°,$\overrightarrow{CM}=\overrightarrow{MD}$,$\overrightarrow{ND}=2\overrightarrow{BN}$,則$\overrightarrow{AM•}\overrightarrow{AN}$=$\frac{13}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=cosωx(ω>0),其圖象上相鄰的兩條對(duì)稱軸之間的距離為$\frac{π}{2}$,
(Ⅰ)求f(x+$\frac{π}{6}$)在區(qū)間[-$\frac{π}{6}$,$\frac{2π}{3}$]上的單調(diào)區(qū)間;
(Ⅱ)若α∈($\frac{5π}{12}$,$\frac{π}{2}$),f(α+$\frac{π}{3}$)=$\frac{1}{3}$,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.過(guò)橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點(diǎn)F作傾斜角為60°的直線l與橢圓C交于A,B兩點(diǎn),則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如果實(shí)數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{2x-y+2≥0}\end{array}\right.$則(x-1)2+y2的最小值是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,2Sn=an•an+1(n∈N*).若bn=(-1)n$\frac{2n+1}{{a}_{n}•{a}_{n+1}}$,則數(shù)列{bn}的前n項(xiàng)和Tn=-1+$\frac{(-1)^{n}}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對(duì)稱軸,過(guò)點(diǎn)A(-4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=( 。
A.2B.4$\sqrt{2}$C.2$\sqrt{10}$D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案