14.如果實數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{2x-y+2≥0}\end{array}\right.$則(x-1)2+y2的最小值是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\sqrt{2}$

分析 首先畫出可行域,利用目標函數(shù)的幾何意義求最小值.

解答 解:由已知得到平面區(qū)域如圖:
則(x-1)2+y2的幾何意義是點(1,0)到區(qū)域距離的平方,所以最小值是$(\frac{1}{\sqrt{2}})^{2}=\frac{1}{2}$;
故選B.

點評 本題考查了簡單線性規(guī)劃問題;首先畫出可行域,一般利用目標函數(shù)的幾何意義求最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.△ABC中,已知a=7,b=14,A=30°,則△ABC有( 。
A.一解B.二解C.無解D.一解或二解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)$\frac{5i}{1+2i}$的虛部是( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若∅?{x|x2≤a,a∈R},則實數(shù)a的取值范圍是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{3x-y-5≥0}\end{array}\right.$,則z=$\frac{y+1}{2x}$的最大值為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若m是2和8的等比中項,則圓錐曲線${x^2}+\frac{y^2}{m}=1$的焦距為$2\sqrt{3}$或$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=ex+x3,若f(x2)<f(3x-2),則實數(shù)x的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線y=x-2與拋物線y2=2x相交于A、B兩點,O為坐標原點.
(1)求證:OA⊥OB.
(2)求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)是定義在R上的偶函數(shù),且f(x+2)=f(2-x)時,當x∈[-2,0]時,$f(x)={(\frac{{\sqrt{2}}}{2})^x}-1$,若(-2,6)在區(qū)間內(nèi)關(guān)于x的方程xf(x)-loga(x+2)=0(a>0且a≠1)有且只有4個不同的根,則實數(shù)a的范圍是(  )
A.$(\frac{1}{4},1)$B.(1,4)C.(1,8)D.(8,+∞)

查看答案和解析>>

同步練習冊答案