6.等差數(shù)列{an}的前n項(xiàng)和${S_n}=2{n^2}-13n$,則數(shù)列{|an|}的前10項(xiàng)和等于112.

分析 等差數(shù)列{an}的前n項(xiàng)和${S_n}=2{n^2}-13n$,可得n=1時(shí),a1=S1;n≥2時(shí),an=Sn-Sn-1=4n-15.令an≤0,解得n≤3,可得數(shù)列{|an|}的前10項(xiàng)和=S10-2S3,即可得出.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和${S_n}=2{n^2}-13n$,
∴n=1時(shí),a1=S1=-11;
n≥2時(shí),an=Sn-Sn-1=2n2-13n-[2(n-1)2-13(n-1)]=4n-15.
令an≤0,解得n≤3,
∴數(shù)列{|an|}的前10項(xiàng)和為:a1-a2-a3+a4+…+a10
=S10-2S3
=2×102-13×10-2×(2×32-13×3)
=112.
故答案為:112.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、絕對(duì)值數(shù)列求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若函數(shù)f(x)=2sin(ωx-$\frac{π}{3}$)(0<ω<π),且f(2+x)=f(2-x),則ω的值為$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知數(shù)列{an}滿足${a_1}=1,{a_n}{a_{n+1}}={2^n}$(n∈N*),則a2n=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若sinα=-$\frac{4}{5}$,α是第三象限的角,則$sin(α+\frac{π}{4})$=( 。
A.-$\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.將y=sinx的圖象沿x軸均勻的壓縮為y′=sin3x′,則坐標(biāo)變換公式是( 。
A.$\left\{\begin{array}{l}x=3x'\\ y=y'\end{array}\right.$B.$\left\{\begin{array}{l}x=\frac{1}{3}x'\\ y=y'\end{array}\right.$C.$\left\{\begin{array}{l}x=x'\\ y=3y'\end{array}\right.$D.$\left\{\begin{array}{l}x=x'\\ y=\frac{1}{3}y'\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)m、n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;
②若α⊥γ,β⊥γ,α∩β=m,則m⊥γ;
③若m∥α,n?α,則m∥n;
④若α⊥β,α∩β=n,m⊥n,則m⊥β
其中正確命題的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若過(guò)點(diǎn)A(2,m)可作函數(shù)f(x)=x3-3x對(duì)應(yīng)曲線的三條切線,則實(shí)數(shù)m的取值范圍為(-6,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若a,b,c是不全相等的正數(shù),給出下列判斷:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b與a<b及a=b中至少有一個(gè)成立;
③a≠c,b≠c,a≠b不能同時(shí)成立.
其中判斷正確的是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知定義在R上的函數(shù)g(x)的導(dǎo)函數(shù)為g′(x),滿足g′(x)-g(x)<0,若函數(shù)g(x)的圖象關(guān)于直線x=2對(duì)稱,且g(4)=1,則不等式$\frac{g(x)}{e^x}$>1的解集為(  )
A.(-2,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案