如圖,邊長為2的正方形ABCD,E,F分別是AB,BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于.
(1)求證:⊥EF;
(2)求二面角的平面角的余弦值.
(1)見解析;(2).
解析試題分析:(1)先根據(jù)正方形的特征得到, ,再根據(jù)點的重合得到, ,由直線與平面垂直的判定定理可知, ,再由直線與平面垂直的性質(zhì)定理得到 ;(2)先取的中點,連,,由等腰三角形底邊上的三線合一以及勾股定理證明,,所以是二面角的平面角,再根據(jù)已知的邊的長度
試題解析:(1)證明:∵是正方形,
∴,, ..2分
∴,, .3分
又, . 4分
∴, 5分
又, .6分
∴. 7分
(2)取的中點,連,,如圖所示:
則在中,∵,,
∴, .8分
∴,
∴, .. 9分
所以是二面角的平面角, 10分
在中,,,
∴,∴, ..11分
∵,∴,又,∴, .12分
∴, .13分
所以二面角的平面角的余弦值是. 14分
考點:1.直線與平面垂直的判定定理;2.直線與平面垂直的性質(zhì)定理;3.解三角形;4.二面角及求法;5.勾股定理
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱錐中,平面,,為側(cè)棱上一點,它的正(主)視圖和側(cè)(左)視圖如圖所示.
(1)證明:平面;
(2)在的平分線上確定一點,使得平面,并求此時的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,是以為直徑的半圓上異于點的點,矩形所在的平面垂直于該半圓所在平面,且
(Ⅰ).求證:;
(Ⅱ).設平面與半圓弧的另一個交點為,
①.求證://;
②.若,求三棱錐E-ADF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點B到平面MAC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,,,平面底面,為中點,M是棱PC上的點,.
(1)若點M是棱PC的中點,求證:平面;
(2)求證:平面底面;
(3)若二面角M-BQ-C為,設PM=tMC,試確定t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com