分析 (1)如圖,建立空間直角坐標(biāo)系,設(shè)AD=1,則AB=2.由DC⊥平面ADD1A1,可得$\overrightarrow{DC}$是平面ADD1A1的一個(gè)法向量.證明$\overrightarrow{MN}•\overrightarrow{DC}$=0,即可證明$MN∥平面AD{D_1}{A_1}\end{array}$.
(2)設(shè)平面DMN的一個(gè)法向量為$\overrightarrow{n}$=(x,y,z).利用$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DM}=0}\\{\overrightarrow{n}•\overrightarrow{DN}=0}\end{array}\right.$,可得$\overrightarrow{n}$.利用sinθ=$\frac{|\overrightarrow{DA}•\overrightarrow{n}|}{|\overrightarrow{DA}||\overrightarrow{n}|}$即可得出.
解答 解:(1)如圖,建立空間直角坐標(biāo)系,設(shè)AD=1,則AB=2.
∵DC⊥平面ADD1A1,∴$\overrightarrow{DC}$=(0,2,0),就是平面ADD1A1的一個(gè)法向量.
$\begin{array}{l}∵M(jìn)(\frac{3}{4},1,0),N(0,1,\frac{1}{2})$,∴$\overrightarrow{MN}=(-\frac{3}{4},0,\frac{1}{2})\\ 又∵\(yùn)overrightarrow{MN}•\overrightarrow{DC}=0$,∴$\overrightarrow{MN}•\overrightarrow{DC}$=0,
∴$\overrightarrow{MN}⊥\overrightarrow{DC}\\∵M(jìn)N?平面AD{D_1}{A_1}$,∴$MN∥平面AD{D_1}{A_1}\end{array}$.
(2)設(shè)平面DMN的一個(gè)法向量為$\overrightarrow n=(x,y,z),\overrightarrow{DA}=(1,0,0)$$\overrightarrow{DM}=(\frac{3}{4},1,0),\overrightarrow{DN}=(0,1,\frac{1}{2})$.
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DM}=0}\\{\overrightarrow{n}•\overrightarrow{DN}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{\frac{3}{4}x+y=0}\\{y+\frac{1}{2}z=0}\end{array}\right.$.
取$\overrightarrow{n}$=$(\frac{4}{3},-1,2)$.
∴sinθ=$\frac{|\overrightarrow{DA}•\overrightarrow{n}|}{|\overrightarrow{DA}||\overrightarrow{n}|}$=$\frac{4\sqrt{61}}{61}$.
所以直線DA與平面ADD1A1,所成角的正弦位值是$\frac{4\sqrt{61}}{61}$.
點(diǎn)評(píng) 本題考查了空間位置關(guān)系、法向量的意義、數(shù)量積運(yùn)算性質(zhì)、向量夾角公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com