8.5位同學(xué)站成一排照相,其中甲與乙必須相鄰,且甲不能站在兩端的排法總數(shù)為36.

分析 根據(jù)題意,對(duì)甲的位置分3種情況討論,依次求出乙以及其他人的站法數(shù)目,求出每種情況的選法數(shù)目,由加法原理計(jì)算可得答案.

解答 解:根據(jù)題意,分3情況討論,
甲站第2個(gè)位置,則乙站1,3中的一個(gè)位置,不同的排法有C21A33=12種;
甲站第3個(gè)位置,則乙站2,4中的一個(gè)位置,不同的排法有C21A33=12種;
甲站第4個(gè)位置,則乙站3,5中的一個(gè)位置,不同的排法有C21A33=12種,
故共有12+12+12=36.
故答案為:36.

點(diǎn)評(píng) 本題考查計(jì)數(shù)原理的運(yùn)用,注意優(yōu)先分析受到限制的元素,如甲.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.f(x)=$\frac{1}{2}$x2+2xf′(2016)+2016lnx,則f′(2016)=( 。
A.1B.-2017C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}(a+1){x^2}$+x(a∈R)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知${\vec e_1}$,${\vec e_2}$是同一平面內(nèi)兩個(gè)單位向量,其夾角為60°,如果$\vec a$=2${\vec e_1}$+${\vec e_2}$,$\overrightarrow b$=-3${\vec e_1}$+2${\vec e_2}$.
(1)求$\vec a•\vec b$
(2)求$\vec a$與$\vec b$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問卷調(diào)查,得到如下2×2列聯(lián)表:
喜歡游泳不喜歡游泳合計(jì)
男生10
女生20
合計(jì)
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為$\frac{3}{5}$.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(2)并判斷是否有99%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.
下面是臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
參考公式:K2的觀測(cè)值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+2)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知在四棱錐P-ABCD中,PA丄底面ABCD,底面ABCD是正方形,PA=AB=2,在該四棱錐內(nèi)部或表面任取一點(diǎn)O,則三棱錐O-PAB的體積不小于$\frac{2}{3}$的概率為( 。
A.$\frac{1}{3}$B.$\frac{5}{16}$C.$\frac{4}{15}$D.$\frac{3}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某市調(diào)研考試后,某校對(duì)甲乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知甲、乙兩個(gè)班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{3}{11}$
 優(yōu)秀 非優(yōu)秀 合計(jì) 
甲  10  
 乙 30  
 合計(jì)  110 
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名同學(xué)從2到10進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求9號(hào)或10號(hào)概率.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
獨(dú)立性檢驗(yàn)臨界值
P(K2≥k0) 0.10 0.050 0.025 0.010 0.001 
k0 2.706  3.841 5.024 6.63510.828 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,在圓內(nèi)隨機(jī)撒一把豆子,統(tǒng)計(jì)落在其內(nèi)接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內(nèi)的豆子數(shù)為m,則圓周率π的估算值是(  )
A.$\frac{n}{m}$B.$\frac{2n}{m}$C.$\frac{3n}{m}$D.$\frac{2m}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=xlnx-mx2有兩個(gè)極值點(diǎn),則實(shí)數(shù)m的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案