17.直線y=a與y=2x-3及曲線y=x+ex分別交于A、B兩點(diǎn),則|AB|的最小值為(  )
A.$\frac{3}{2}$B.eC.3D.2

分析 設(shè)A(x1,a),B(x2,a),則2x1-3=x2+ex2,表示出x1,求出|AB|,利用導(dǎo)數(shù)求出|AB|的最小值

解答 解:設(shè)A(x1,a),B(x2,a),
則2x1-3=x2+ex2,
∴x1=$\frac{1}{2}$(x2+ex2+3),
∴|AB|=|x2-x1|=|$\frac{1}{2}$(x2-ex2-3)|,
令y=$\frac{1}{2}$(x-ex-3),
則y′=$\frac{1}{2}$(1-ex),
∴函數(shù)在(0,+∞)上單調(diào)遞減,在(-∞,0)上單調(diào)遞增,
∴x=0時(shí),函數(shù)y的最大值為-2,
即有|AB|的最小值為2.
故選:D

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,正確求導(dǎo)確定函數(shù)的單調(diào)性是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x+5$.
(Ⅰ)求曲線y=f(x)在點(diǎn)(0,5)處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若平面內(nèi)三點(diǎn)A(1,-a),B(2,a2),C(3,a3)共線,則a=( 。
A.1±$\sqrt{2}$或0B.$\frac{{2-\sqrt{5}}}{2}或0$C.$\frac{{2±\sqrt{5}}}{2}$D.$\frac{{2+\sqrt{5}}}{2}或0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+alnx,若對(duì)任意兩個(gè)不等的正實(shí)數(shù)x1,x2都有$\frac{{f(x{\;}_1)-f({x_2})}}{{{x_1}-{x_2}}}$>2恒成立,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.點(diǎn)A(x,y)是-300°角終邊與單位圓的交點(diǎn),則$\frac{y}{x}$的值為( 。
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$(n∈N*),則可歸納猜想{an}的通項(xiàng)公式為(  )
A.an=$\frac{2}{n}$B.an=$\frac{2}{n+1}$C.an=$\frac{1}{n}$D.an=$\frac{1}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線x=$\frac{π}{4}$和x=$\frac{5π}{4}$是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對(duì)稱軸,則φ的值為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|y=lg(x-1)},B={x||x|<2},則A∩B=( 。
A.(-2,0)B.(0,2)C.(1,2)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,AB=2,AC=3,$\overrightarrow{AB}•\overrightarrow{BC}=1$,則$|\overrightarrow{BC}|$=( 。
A.$\sqrt{7}$B.$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{23}$

查看答案和解析>>

同步練習(xí)冊(cè)答案