20.如圖,在棱臺(tái)ABC-FED中,△DEF與△ABC分別是棱長(zhǎng)為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點(diǎn),$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)λ為何值時(shí),MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.

分析 (Ⅰ)取CD中點(diǎn)P,連接PM,PN,可得MP∥AC,則MP∥平面ABC.再由已知證明NP∥平面ABC.得到平面MNP∥平面ABC,則MN∥平面ABC;
(Ⅱ)取BC中點(diǎn)O,連OA,OE,可證AO⊥BC,OE⊥BC.分別以O(shè)E,OC,OA所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系.求出所用點(diǎn)的坐標(biāo),得到平面BMN的法向量,求出<$\overrightarrow{AN},\overrightarrow{n}$>的余弦值,即可得到直線AN與平面MNB所成角的正弦值.

解答 解:(Ⅰ)當(dāng)$λ=\frac{1}{2}$,即M為AF中點(diǎn)時(shí)MN∥平面ABC.
事實(shí)上,取CD中點(diǎn)P,連接PM,PN,
∵AM=MF,CP=PD,∴MP∥AC,
∵AC?平面ABC,MP?平面ABC,∴MP∥平面ABC.
由CP∥PD,CN∥NE,得NP∥DE,
又DE∥BC,∴NP∥BC,
∵BC?平面ABC,NP?平面ABC,∴NP∥平面ABC.
∴平面MNP∥平面ABC,則MN∥平面ABC;
(Ⅱ)取BC中點(diǎn)O,連OA,OE,
∵AB=AC,OB=OC,∴AO⊥BC,
∵平面ABC⊥平面BCDE,且AO?平面ABC,∴AO⊥平面BCDE,
∵OC=$\frac{1}{2}BC=ED$,BC∥ED,∴OE∥CD,
又CD⊥BC,∴OE⊥BC.
分別以O(shè)E,OC,OA所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系.
則A(0,0,$\sqrt{3}$),C(0,1,0),E(1,0,0),$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{BA}=(0,\frac{1}{2},\frac{\sqrt{3}}{2})$,
∴F(1,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),M($\frac{1}{2}$,$\frac{1}{4}$,$\frac{3\sqrt{3}}{4}$),N($\frac{1}{2},\frac{1}{2},0$).
設(shè)$\overrightarrow{n}=(x,y,z)$為平面BMN的法向量,則
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BN}=\frac{x}{2}+\frac{3}{2}y=0}\\{\overrightarrow{n}•\overrightarrow{MN}=-\frac{y}{4}+\frac{3\sqrt{3}}{4}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}=(-9\sqrt{3},3\sqrt{3},1)$.
cos<$\overrightarrow{AN},\overrightarrow{n}$>=$\frac{-4\sqrt{6}}{\sqrt{1897}}$.
∴直線AN與平面MNB所成角的正弦值為$\frac{4\sqrt{6}}{\sqrt{1897}}$.

點(diǎn)評(píng) 本題考查直線與平面平行的判定,考查空間想象能力和思維能力,訓(xùn)練了利用空間向量求線面角,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.|x|•(1-2x)>0的解集為(  )
A.(-∞,0)∪(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=sin2x的圖象向右平移ϕ$({0<ϕ<\frac{π}{2}})$個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間$[{0,\frac{π}{3}}]$上單調(diào)遞增,且函數(shù)g(x)的最大負(fù)零點(diǎn)在區(qū)間$({-\frac{π}{3},-\frac{π}{12}})$內(nèi),則ϕ的取值范圍是( 。
A.$[{\frac{π}{12},\frac{π}{4}}]$B.$[{\frac{π}{6},\frac{5π}{12}})$C.$[{\frac{π}{6},\frac{π}{3}}]$D.$({\frac{π}{6},\frac{π}{4}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示的幾何體是由棱臺(tái)ABC-A1B1C1和棱錐D-AA1C1C拼接而成的組合體,其底面四邊形ABCD是邊長(zhǎng)為2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.
(Ⅰ)求證:平面AB1C⊥平面BB1D;
(Ⅱ)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$α∈({0,\frac{π}{2}})$,且$2cos2α=cos({\frac{π}{4}-α})$,則sin2α的值為( 。
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{7}{8}$D.$-\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題p:?x>2,2x-3>0的否定是( 。
A.?x0>2,${2^{x_0}}-3≤0$B.?x≤2,2x-3>0C.?x>2,2x-3≤0D.?x0>2,${2^{x_0}}-3>0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x>1},B={y|y=x2,x∈R},則A∩B=(  )
A.[0,+∞)B.(1,+∞)C.[0,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知P:?x>0,lnx<x,則¬P為(  )
A.?x≤0,lnx0>x0B.?x≤0,lnx0≥x0C.?x>0,lnx0≥x0D.?x>0,lnx0<x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$則z=2x+y的最大值是10.

查看答案和解析>>

同步練習(xí)冊(cè)答案