8.如圖所示的幾何體是由棱臺(tái)ABC-A1B1C1和棱錐D-AA1C1C拼接而成的組合體,其底面四邊形ABCD是邊長(zhǎng)為2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.
(Ⅰ)求證:平面AB1C⊥平面BB1D;
(Ⅱ)求二面角A1-BD-C1的余弦值.

分析 (Ⅰ)由BB1⊥平面ABCD,得BB1⊥AC,再由ABCD是菱形,得BD⊥AC,由線面垂直的判定可得AC⊥平面BB1D,進(jìn)一步得到平面AB1C⊥平面BB1D;
(Ⅱ)設(shè)BD、AC交于點(diǎn)O,以O(shè)為坐標(biāo)原點(diǎn),以O(shè)A為x軸,以O(shè)D為y軸,建立如圖所示空間直角坐標(biāo)系.求出所用點(diǎn)的坐標(biāo),得到平面A1BD與平面DCF的法向量,由兩法向量所成角的余弦值可得二面角A1-BD-C1的余弦值.

解答 (Ⅰ)證明:∵BB1⊥平面ABCD,∴BB1⊥AC
∵ABCD是菱形,∴BD⊥AC,
又BD∩BB1=B,∴AC⊥平面BB1D,
∵AC?平面AB1C,∴平面AB1C⊥平面BB1D;
(Ⅱ)設(shè)BD、AC交于點(diǎn)O,以O(shè)為坐標(biāo)原點(diǎn),以O(shè)A為x軸,以O(shè)D為y軸,建立如圖所示空間直角坐標(biāo)系.
則$B(0,-1,0),D(0,1,0),{B_1}(0,-1,2),A(\sqrt{3},0,0)$,${A}_{1}(\frac{\sqrt{3}}{2},-\frac{1}{2},2)$,${C_1}(-\frac{{\sqrt{3}}}{2},-\frac{1}{2},2)$,
∴$\overrightarrow{B{A_1}}=(\frac{{\sqrt{3}}}{2},\frac{1}{2},2)$,$\overrightarrow{BD}=(0,2,0)$,$\overrightarrow{B{C_1}}=(-\frac{{\sqrt{3}}}{2},\frac{1}{2},2)$.
設(shè)平面A1BD的法向量$\overrightarrow n=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{B{A}_{1}}=\frac{\sqrt{3}}{2}x+\frac{1}{2}y+2z=0}\\{\overrightarrow{n}•\overrightarrow{BD}=2y=0}\end{array}\right.$,取z=$\sqrt{3}$,得$\overrightarrow n=(-4,0,\sqrt{3})$,
設(shè)平面DCF的法向量$\overrightarrow m=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=2y=0}\\{\overrightarrow{m}•\overrightarrow{B{C}_{1}}=-\frac{\sqrt{3}}{2}x+\frac{1}{2}y+2=0}\end{array}\right.$,取z=$\sqrt{3}$,得$\overrightarrow m=(4,0,\sqrt{3})$.
設(shè)二面角A1-BD-C1為θ,
則$cosθ=\frac{{\overrightarrow{\left|m\right.}•\left.{\overrightarrow n}\right|}}{|m||n|}=\frac{13}{19}$.

點(diǎn)評(píng) 本題考查平面與平面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了利用空間向量求二面角的平面角,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且過(guò)點(diǎn)$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)若直線l:y=kx+m(k>0)與E相交于P,Q兩點(diǎn),且OP與OQ(O為坐標(biāo)原點(diǎn))的斜率之和為2,求O到直線l距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,直線x+2y=a與圓x2+y2=1相交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=a,則實(shí)數(shù)a的值為( 。
A.$\frac{5-\sqrt{65}}{4}$B.$\frac{\sqrt{65}-5}{4}$C.$\frac{5-\sqrt{55}}{4}$D.$\frac{\sqrt{55}-5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.哈六中在2017年3月中旬舉辦了一次知識(shí)競(jìng)賽,經(jīng)過(guò)層層篩選,最后五名同學(xué)進(jìn)入了總決賽.在進(jìn)行筆答題知識(shí)競(jìng)賽中,最后一個(gè)大題是選做題,要求參加競(jìng)賽的五名選手從2道題中選做一道進(jìn)行解答,假設(shè)這5位選手選做每一題的可能性均為$\frac{1}{2}$.
(Ⅰ)求其中甲乙2位選手選做同一道題的概率.
(Ⅱ)設(shè)這5位選手中選做第1題的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.實(shí)數(shù)x,y,a,b滿足xy=2,a+2b=0,則(x-a)2+(y-b)2的最小值為$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)$f(x)=|{x+a+1}|+|{x-\frac{4}{a}}|,(a>0)$.
(Ⅰ)證明:f(x)≥5;
(Ⅱ)若f(1)<6成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在棱臺(tái)ABC-FED中,△DEF與△ABC分別是棱長(zhǎng)為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點(diǎn),$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)λ為何值時(shí),MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則m⊥β的一個(gè)充分條件是( 。
A.α⊥β且m?αB.m∥n且n⊥βC.α⊥β且m∥αD.m⊥n且n∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}CD$=1,如圖2,將△ABD沿BD折起來(lái),使平面ABD⊥平面BCD,設(shè)E為AD的中點(diǎn),F(xiàn)為AC上一點(diǎn),O為BD的中點(diǎn).
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)若AF=2FC,求三棱錐A-BEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案