9.f(x)=xcosx,f(x)=cos(2π-x)-x3sinx的奇偶性分別為奇函數(shù);偶函數(shù).

分析 利用奇偶函數(shù)的定義分別判斷f(-x)與f(x)的關(guān)系,在定義域關(guān)于原點(diǎn)對(duì)稱的前提下,如果相等即為偶函數(shù),相反為奇函數(shù).

解答 解:兩個(gè)函數(shù)的定義域?yàn)镽;
因?yàn)閒(-x)=-xcos(-x)=-xcosx=-f(x),所以為奇函數(shù);
f(-x)=cos(2π+x)-(-x)3sin(-x)=cosx-x3sinx=f(x),所以為偶函數(shù);
故答案為:奇函數(shù);偶函數(shù).

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性的判定;首先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱;在定義域關(guān)于原點(diǎn)對(duì)稱的前提下,如果相等即為偶函數(shù),相反為奇函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-8+t}\\{y=\frac{t}{2}}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2{s}^{2}}\\{y=2\sqrt{2}}s\end{array}\right.$(s為參數(shù)).設(shè)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.用數(shù)字1,2,3,4,5,6,7,8,9組成沒(méi)有重復(fù)數(shù)字,且至多有一個(gè)數(shù)字是偶數(shù)的四位數(shù),這樣的四位數(shù)一共有1080個(gè).(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.
(Ⅰ)求異面直線AP與BC所成角的余弦值;
(Ⅱ)求證:PD⊥平面PBC;
(Ⅲ)求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=($\frac{1}{2}$a-$\sqrt{3}$)sinx+($\frac{\sqrt{3}}{2}$a+1)cosx,將f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度得到函數(shù)g(x)的圖象,若對(duì)任意x∈R,都有g(shù)(x)≤g($\frac{π}{4}$),則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),有$\frac{f(a)+f(b)}{a+b}$>0成立.
(1)判斷f(x)在[-1,1]上的單調(diào)性,并用定義證明;
(2)解不等式:f(2x-1)>f(x2-1);
(3)若f(x)≤m2-3am+1對(duì)所有的a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,下列說(shuō)法正確的有(  )個(gè)
①函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{5π}{12}$對(duì)稱
②函數(shù)f(x)在$[-\frac{π}{3},0]$上單調(diào)遞增
③函數(shù)f(x)的圖象關(guān)于點(diǎn)$(-\frac{2π}{3},0)$對(duì)稱
④將函數(shù)y=2sin2x的圖象向左平移$\frac{π}{3}$個(gè)單位得到f(x)的圖象.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求解以下兩小題:
(1)91100除以100的余數(shù)是幾?
(2)若(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.求:
(i)a1+a2+a3+…+a11;
(ii)a0+a2+a4+…+a10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.甲、乙、丙三人投擲飛鏢,他們的成績(jī)(環(huán)數(shù))如下面的頻數(shù)條統(tǒng)計(jì)圖所示.則甲、乙、丙三人的訓(xùn)練成績(jī)方差S2,S2,S2的大小關(guān)系是S2<S2<S2

查看答案和解析>>

同步練習(xí)冊(cè)答案