10.設(shè)雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的離心率是3,則其漸近線的方程為( 。
A.$x±2\sqrt{2}y=0$B.$2\sqrt{2}x±y=0$C.x±8y=0D.8x±y=0

分析 利用雙曲線的離心率,這求出a,b的關(guān)系式,然后求漸近線方程.

解答 解:雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的離心率是3,
可得$\frac{c}{a}=3$,則$\frac{a}$=$\frac{1}{2\sqrt{2}}$.
雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的離心率是3,則其漸近線的方程為:x$±2\sqrt{2}y=0$.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x∈N|($\frac{1}{2}$)x≤1},B={x|x2-2x-8≤0},則A∩B=( 。
A.{x|0≤x≤4}B.{0,1,2,3}C.{0,1,2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)為偶函數(shù),且在[0,$\frac{π}{4}$]上是增函數(shù),則φ的一個(gè)可能值為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在[0,2π]上隨機(jī)取一個(gè)數(shù)x,則事件“$cos(x+\frac{π}{3})+\sqrt{3}sin(x+\frac{π}{3})≥1$”發(fā)生的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合A={x|x(x-1)<2},且A∪B=A,則集合B可能是( 。
A.{-1,2}B.{0,1}C.{-1,0}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)是原點(diǎn),以x軸為對(duì)稱軸,且經(jīng)過點(diǎn)P(1,2).
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)點(diǎn)A,B在拋物線C上,直線PA,PB分別與y軸交于點(diǎn)M,N,|PM|=|PN|.求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x∈R|-1<x<1},B={x∈R|x•(x-2)<0},那么A∩B=( 。
A.{x∈R|0<x<1}B.{x∈R|0<x<2}C.{x∈R|-1<x<0}D.{x∈R|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知cos(α-30°)=$\frac{12}{13}$,30°<α<90°,求cosα;
(2)已知α、β都是銳角,且cos(α+β)=$\frac{33}{65}$,cosβ=$\frac{5}{13}$,求cosα的值;
(3)已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某班級(jí)的54名學(xué)生編號(hào)為:1,2,3,…,54,為了采集同學(xué)們的身高信息,先采用系統(tǒng)抽樣的方法抽取一個(gè)容量為6的樣本,已知樣本中含有編號(hào)為5號(hào)、23號(hào)和41號(hào)的學(xué)生,則樣本中剩余三名同學(xué)的編號(hào)分別為14,32,50.

查看答案和解析>>

同步練習(xí)冊(cè)答案